|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
class DeepseekV3Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the DeepSeek-V3. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 129280): |
|
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`DeepseekV3Model`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
Dimension of the MLP representations. |
|
moe_intermediate_size (`int`, *optional*, defaults to 1407): |
|
Dimension of the MoE representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer decoder. |
|
num_nextn_predict_layers (`int`, *optional*, defaults to 1): |
|
Number of nextn predict layers in the DeepSeekV3 Model. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
n_shared_experts (`int`, *optional*, defaults to None): |
|
Number of shared experts, None means dense model. |
|
n_routed_experts (`int`, *optional*, defaults to None): |
|
Number of routed experts, None means dense model. |
|
routed_scaling_factor (`float`, *optional*, defaults to 1.0): |
|
Scaling factor or routed experts. |
|
topk_method (`str`, *optional*, defaults to `gready`): |
|
Topk method used in routed gate. |
|
n_group (`int`, *optional*, defaults to None): |
|
Number of groups for routed experts. |
|
topk_group (`int`, *optional*, defaults to None): |
|
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). |
|
num_experts_per_tok (`int`, *optional*, defaults to None): |
|
Number of selected experts, None means dense model. |
|
moe_layer_freq (`int`, *optional*, defaults to 1): |
|
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers. |
|
first_k_dense_replace (`int`, *optional*, defaults to 0): |
|
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head). |
|
\--k dense layers--/ |
|
norm_topk_prob (`bool`, *optional*, defaults to False): |
|
Whether to normalize the weights of the routed experts. |
|
scoring_func (`str`, *optional*, defaults to 'softmax'): |
|
Method of computing expert weights. |
|
aux_loss_alpha (`float`, *optional*, defaults to 0.001): |
|
Auxiliary loss weight coefficient. |
|
seq_aux = (`bool`, *optional*, defaults to True): |
|
Whether to compute the auxiliary loss for each individual sample. |
|
num_key_value_heads (`int`, *optional*): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to |
|
`num_attention_heads`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
Padding token id. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
Beginning of stream token id. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
End of stream token id. |
|
pretraining_tp (`int`, *optional*, defaults to 1): |
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this |
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is |
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this |
|
issue](https://github.com/pytorch/pytorch/issues/76232). |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether to tie weight embeddings |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
rope_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling |
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is |
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update |
|
`max_position_embeddings` to the expected new maximum. |
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): |
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
```python |
|
>>> from transformers import DeepseekV3Model, DeepseekV3Config |
|
|
|
>>> # Initializing a Deepseek-V3 style configuration |
|
>>> configuration = DeepseekV3Config() |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "deepseek_v3" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=129280, |
|
hidden_size=7168, |
|
intermediate_size=18432, |
|
moe_intermediate_size = 2048, |
|
num_hidden_layers=61, |
|
num_nextn_predict_layers=1, |
|
num_attention_heads=128, |
|
num_key_value_heads=128, |
|
n_shared_experts = 1, |
|
n_routed_experts = 256, |
|
ep_size = 1, |
|
routed_scaling_factor = 2.5, |
|
kv_lora_rank = 512, |
|
q_lora_rank = 1536, |
|
qk_rope_head_dim = 64, |
|
v_head_dim = 128, |
|
qk_nope_head_dim = 128, |
|
topk_method = 'noaux_tc', |
|
n_group = 8, |
|
topk_group = 4, |
|
num_experts_per_tok = 8, |
|
moe_layer_freq = 1, |
|
first_k_dense_replace = 3, |
|
norm_topk_prob = True, |
|
scoring_func = 'sigmoid', |
|
aux_loss_alpha = 0.001, |
|
seq_aux = True, |
|
hidden_act="silu", |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=None, |
|
bos_token_id=0, |
|
eos_token_id=1, |
|
pretraining_tp=1, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
rope_scaling=None, |
|
attention_bias=False, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.moe_intermediate_size = moe_intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_nextn_predict_layers = num_nextn_predict_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.n_shared_experts = n_shared_experts |
|
self.n_routed_experts = n_routed_experts |
|
self.ep_size = ep_size |
|
self.routed_scaling_factor = routed_scaling_factor |
|
self.kv_lora_rank = kv_lora_rank |
|
self.q_lora_rank = q_lora_rank |
|
self.qk_rope_head_dim = qk_rope_head_dim |
|
self.v_head_dim = v_head_dim |
|
self.qk_nope_head_dim = qk_nope_head_dim |
|
self.topk_method = topk_method |
|
self.n_group = n_group |
|
self.topk_group = topk_group |
|
self.num_experts_per_tok = num_experts_per_tok |
|
self.moe_layer_freq = moe_layer_freq |
|
self.first_k_dense_replace = first_k_dense_replace |
|
self.norm_topk_prob = norm_topk_prob |
|
self.scoring_func = scoring_func |
|
self.aux_loss_alpha = aux_loss_alpha |
|
self.seq_aux = seq_aux |
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.pretraining_tp = pretraining_tp |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
self.rope_scaling = rope_scaling |
|
self.attention_bias = attention_bias |
|
self.attention_dropout = attention_dropout |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |