metadata
language:
- en
license: other
library_name: transformers
tags:
- orpo
- qwen2
- rlhf
- sft
base_model:
- Qwen/Qwen2-72B-Instruct
datasets:
- mlabonne/orpo-dpo-mix-40k
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
model-index:
- name: Qwen2-72B-Orpo-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 78.8
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 57.41
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 35.42
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 17.9
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.87
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Qwen2-72B-Orpo-v0.1
name: Open LLM Leaderboard
dfurman/Qwen2-72B-Orpo-v0.1
Model
This model is a finetune of Qwen/Qwen2-72B-Instruct
on 1.5k rows of mlabonne/orpo-dpo-mix-40k
. It was trained as a generalist language model for a variety of text generation use cases, including support of agentic capabilities, roleplaying, reasoning, multi-turn conversations, long context coherence, and more.
Thanks go out to mlabonne, Qwen, et al. for the source dataset and base model.
You can find the experiment on W&B at this address.
💻 Usage
Setup
!pip install -qU transformers accelerate bitsandbytes
!huggingface-cli download dfurman/Qwen2-72B-Orpo-v0.1
from transformers import AutoTokenizer, BitsAndBytesConfig
import transformers
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install -qqq flash-attn
attn_implementation = "flash_attention_2"
torch_dtype = torch.bfloat16
else:
attn_implementation = "eager"
torch_dtype = torch.float16
# quantize if necessary
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch_dtype,
# bnb_4bit_use_double_quant=True,
# )
model = "dfurman/Qwen2-72B-Orpo-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={
"torch_dtype": torch_dtype,
# "quantization_config": bnb_config,
"device_map": "auto",
"attn_implementation": attn_implementation,
}
)
Run
question = """The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday morning.
They sold 93 loaves in the morning and 39 loaves in the afternoon.
A grocery store then returned 6 unsold loaves back to the bakery.
How many loaves of bread did the bakery have left?
Respond as succinctly as possible. Format the response as a completion of this table:
|step|subquestion|procedure|result|
|:---|:----------|:--------|:-----:|"""
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": question},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# print("***Prompt:\n", prompt)
outputs = pipeline(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print("***Generation:")
print(outputs[0]["generated_text"][len(prompt):])
***Generation:
|1|Initial loaves|Start with total loaves|200|
|2|Sold in morning|Subtract morning sales|200 - 93 = 107|
|3|Sold in afternoon|Subtract afternoon sales|107 - 39 = 68|
|4|Returned loaves|Add returned loaves|68 + 6 = 74|
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 43.32 |
IFEval (0-Shot) | 78.80 |
BBH (3-Shot) | 57.41 |
MATH Lvl 5 (4-Shot) | 35.42 |
GPQA (0-shot) | 17.90 |
MuSR (0-shot) | 20.87 |
MMLU-PRO (5-shot) | 49.50 |