Transformers documentation

PatchTSMixer

You are viewing v4.36.1 version. A newer version v4.47.1 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

PatchTSMixer

Overview

The PatchTSMixer model was proposed in TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong and Jayant Kalagnanam.

PatchTSMixer is a lightweight time-series modeling approach based on the MLP-Mixer architecture. In this HuggingFace implementation, we provide PatchTSMixer’s capabilities to effortlessly facilitate lightweight mixing across patches, channels, and hidden features for effective multivariate time-series modeling. It also supports various attention mechanisms starting from simple gated attention to more complex self-attention blocks that can be customized accordingly. The model can be pretrained and subsequently used for various downstream tasks such as forecasting, classification and regression.

The abstract from the paper is the following:

TSMixer is a lightweight neural architecture exclusively composed of multi-layer perceptron (MLP) modules designed for multivariate forecasting and representation learning on patched time series. Our model draws inspiration from the success of MLP-Mixer models in computer vision. We demonstrate the challenges involved in adapting Vision MLP-Mixer for time series and introduce empirically validated components to enhance accuracy. This includes a novel design paradigm of attaching online reconciliation heads to the MLP-Mixer backbone, for explicitly modeling the time-series properties such as hierarchy and channel-correlations. We also propose a Hybrid channel modeling approach to effectively handle noisy channel interactions and generalization across diverse datasets, a common challenge in existing patch channel-mixing methods. Additionally, a simple gated attention mechanism is introduced in the backbone to prioritize important features. By incorporating these lightweight components, we significantly enhance the learning capability of simple MLP structures, outperforming complex Transformer models with minimal computing usage. Moreover, TSMixer’s modular design enables compatibility with both supervised and masked self-supervised learning methods, making it a promising building block for time-series Foundation Models. TSMixer outperforms state-of-the-art MLP and Transformer models in forecasting by a considerable margin of 8-60%. It also outperforms the latest strong benchmarks of Patch-Transformer models (by 1-2%) with a significant reduction in memory and runtime (2-3X).

This model was contributed by ajati, vijaye12, gsinthong, namctin, wmgifford, kashif.

Sample usage


from transformers import PatchTSMixerConfig, PatchTSMixerForPrediction
from transformers import Trainer, TrainingArguments,


config = PatchTSMixerConfig(context_length = 512, prediction_length = 96)
model = PatchTSMixerForPrediction(config)
trainer = Trainer(model=model, args=training_args, 
            train_dataset=train_dataset,
            eval_dataset=valid_dataset)
trainer.train()
results = trainer.evaluate(test_dataset)

Usage tips

The model can also be used for time series classification and time series regression. See the respective PatchTSMixerForTimeSeriesClassification and PatchTSMixerForRegression classes.

PatchTSMixerConfig

class transformers.PatchTSMixerConfig

< >

( context_length: int = 32 patch_len: int = 8 num_input_channels: int = 1 patch_stride: int = 8 num_parallel_samples: int = 100 d_model: int = 8 expansion_factor: int = 2 num_layers: int = 3 dropout: float = 0.2 mode: str = 'common_channel' gated_attn: bool = True norm_mlp: str = 'LayerNorm' self_attn: bool = False self_attn_heads: int = 1 use_positional_encoding: bool = False positional_encoding_type: str = 'sincos' scaling: typing.Union[str, bool, NoneType] = 'std' loss: str = 'mse' init_std: float = 0.02 post_init: bool = False norm_eps: float = 1e-05 mask_type: str = 'random' random_mask_ratio: float = 0.5 num_forecast_mask_patches: typing.Union[typing.List[int], int, NoneType] = [2] mask_value: int = 0 masked_loss: bool = True channel_consistent_masking: bool = True unmasked_channel_indices: typing.Optional[typing.List[int]] = None head_dropout: float = 0.2 distribution_output: str = 'student_t' prediction_length: int = 16 prediction_channel_indices: list = None num_targets: int = 3 output_range: list = None head_aggregation: str = 'max_pool' **kwargs )

Parameters

  • context_length (int, optional, defaults to 32) — The context/history length for the input sequence.
  • patch_len (int, optional, defaults to 8) — The patch length for the input sequence.
  • num_input_channels (int, optional, defaults to 1) — Number of input variates. For Univariate, set it to 1.
  • patch_stride (int, optional, defaults to 8) — Determines the overlap between two consecutive patches. Set it to patch_length (or greater), if we want non-overlapping patches.
  • num_parallel_samples (int, optional, defaults to 100) — The number of samples to generate in parallel for probabilistic forecast.

This is the configuration class to store the configuration of a PatchTSMixerModel. It is used to instantiate a PatchTSMixer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PatchTSMixer ibm/patchtsmixer-etth1-pretrain architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import PatchTSMixerConfig, PatchTSMixerModel

>>> # Initializing a default PatchTSMixer configuration
>>> configuration = PatchTSMixerConfig()

>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = PatchTSMixerModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

PatchTSMixerModel

class transformers.PatchTSMixerModel

< >

( config: PatchTSMixerConfig mask_input: bool = False )

Parameters

  • config (PatchTSMixerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
  • mask_input (bool, optional, defaults to False) — If True, Masking will be enabled. False otherwise.

The PatchTSMixer Model for time-series forecasting.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( past_values: Tensor observed_mask: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = False return_dict: typing.Optional[bool] = None ) β†’ transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerModelOutput or tuple(torch.FloatTensor)

Parameters

  • past_values (torch.FloatTensor of shape (batch_size, seq_length, num_input_channels)) — Context values of the time series. For a pretraining task, this denotes the input time series to predict the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, for classification or regression tasks, it denotes the appropriate context values of the time series.

    For univariate time series, num_input_channels dimension should be 1. For multivariate time series, it is greater than 1.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

    observed_mask (torch.FloatTensor of shape (batch_size, sequence_length, num_input_channels), optional): Boolean mask to indicate which past_values were observed and which were missing. Mask values selected in [0, 1]:

    • 1 for values that are observed,
    • 0 for values that are missing (i.e. NaNs that were replaced by zeros).

Returns

transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerModelOutput or tuple(torch.FloatTensor)

A transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (PatchTSMixerConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, num_channels, num_patches, d_model)) β€” Hidden-state at the output of the last layer of the model.
  • hidden_states (tuple(torch.FloatTensor), optional) β€” Hidden-states of the model at the output of each layer.
  • patch_input (torch.FloatTensor of shape (batch_size, num_channels, num_patches, patch_length)) β€” Patched input data to the model.
  • mask: (torch.FloatTensor of shape (batch_size, num_channels, num_patches),optional) β€” Bool Tensor indicating True in masked patches and False otherwise.
  • loc: (torch.FloatTensor of shape (batch_size, 1, num_channels),optional) β€” Gives the mean of the context window per channel. Used for revin denorm outside the model, if revin enabled.
  • scale: (torch.FloatTensor of shape (batch_size, 1, num_channels),optional) β€” Gives the std dev of the context window per channel. Used for revin denorm outside the model, if revin enabled.

The PatchTSMixerModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

PatchTSMixerForPrediction

class transformers.PatchTSMixerForPrediction

< >

( config: PatchTSMixerConfig )

Parameters

  • config (PatchTSMixerConfig, required) — Configuration.

PatchTSMixer for forecasting application.

forward

< >

( past_values: Tensor observed_mask: typing.Optional[torch.Tensor] = None future_values: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = False return_loss: bool = True return_dict: typing.Optional[bool] = None ) β†’ transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForPredictionOutput or tuple(torch.FloatTensor)

Parameters

  • past_values (torch.FloatTensor of shape (batch_size, seq_length, num_input_channels)) — Context values of the time series. For a pretraining task, this denotes the input time series to predict the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, for classification or regression tasks, it denotes the appropriate context values of the time series.

    For univariate time series, num_input_channels dimension should be 1. For multivariate time series, it is greater than 1.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

    observed_mask (torch.FloatTensor of shape (batch_size, sequence_length, num_input_channels), optional): Boolean mask to indicate which past_values were observed and which were missing. Mask values selected in [0, 1]:

    • 1 for values that are observed,
    • 0 for values that are missing (i.e. NaNs that were replaced by zeros). future_values (torch.FloatTensor of shape (batch_size, target_len, num_input_channels) for forecasting,: (batch_size, num_targets) for regression, or (batch_size,) for classification, optional): Target values of the time series, that serve as labels for the model. The future_values is what the Transformer needs during training to learn to output, given the past_values. Note that, this is NOT required for a pretraining task.

    For a forecasting task, the shape is be (batch_size, target_len, num_input_channels). Even if we want to forecast only specific channels by setting the indices in prediction_channel_indices parameter, pass the target data with all channels, as channel Filtering for both prediction and target will be manually applied before the loss computation.

    return_loss (bool, optional): Whether to return the loss in the forward call.

Returns

transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForPredictionOutput or tuple(torch.FloatTensor)

A transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForPredictionOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (PatchTSMixerConfig) and inputs.

  • prediction_outputs (torch.FloatTensor of shape (batch_size, prediction_length, num_input_channels)) β€” Prediction output from the forecast head.
  • last_hidden_state (torch.FloatTensor of shape (batch_size, num_input_channels, num_patches, d_model)) β€” Backbone embeddings before passing through the head.
  • hidden_states (tuple(torch.FloatTensor), optional) β€” Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
  • loss (optional, returned when y is provided, torch.FloatTensor of shape ()) β€” Total loss.
  • loc (torch.FloatTensor, optional of shape (batch_size, 1, num_input_channels)) β€” Input mean
  • scale (torch.FloatTensor, optional of shape (batch_size, 1, num_input_channels)) β€” Input std dev

The PatchTSMixerForPrediction forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

PatchTSMixerForTimeSeriesClassification

class transformers.PatchTSMixerForTimeSeriesClassification

< >

( config: PatchTSMixerConfig )

Parameters

  • config (PatchTSMixerConfig, required) — Configuration.

PatchTSMixer for classification application.

forward

< >

( past_values: Tensor future_values: Tensor = None output_hidden_states: typing.Optional[bool] = False return_loss: bool = True return_dict: typing.Optional[bool] = None ) β†’ transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForTimeSeriesClassificationOutput or tuple(torch.FloatTensor)

Parameters

  • past_values (torch.FloatTensor of shape (batch_size, seq_length, num_input_channels)) — Context values of the time series. For a pretraining task, this denotes the input time series to predict the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, for classification or regression tasks, it denotes the appropriate context values of the time series.

    For univariate time series, num_input_channels dimension should be 1. For multivariate time series, it is greater than 1.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

    future_values (torch.FloatTensor of shape (batch_size, target_len, num_input_channels) for forecasting, (batch_size, num_targets) for regression, or (batch_size,) for classification, optional): Target values of the time series, that serve as labels for the model. The future_values is what the Transformer needs during training to learn to output, given the past_values. Note that, this is NOT required for a pretraining task.

    For a forecasting task, the shape is be (batch_size, target_len, num_input_channels). Even if we want to forecast only specific channels by setting the indices in prediction_channel_indices parameter, pass the target data with all channels, as channel Filtering for both prediction and target will be manually applied before the loss computation.

    For a classification task, it has a shape of (batch_size,).

    For a regression task, it has a shape of (batch_size, num_targets). return_loss (bool, optional): Whether to return the loss in the forward call.

Returns

transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForTimeSeriesClassificationOutput or tuple(torch.FloatTensor)

A transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForTimeSeriesClassificationOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (PatchTSMixerConfig) and inputs.

  • prediction_outputs (torch.FloatTensor of shape (batch_size, num_labels)) β€” Prediction output from the classfication head.
  • last_hidden_state (torch.FloatTensor of shape (batch_size, num_input_channels, num_patches, d_model)) β€” Backbone embeddings before passing through the head.
  • hidden_states (tuple(torch.FloatTensor), optional) β€” Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
  • loss (optional, returned when y is provided, torch.FloatTensor of shape ()) β€” Total loss.

The PatchTSMixerForTimeSeriesClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

PatchTSMixerForPretraining

class transformers.PatchTSMixerForPretraining

< >

( config: PatchTSMixerConfig )

Parameters

  • config (PatchTSMixerConfig, required) — Configuration.

PatchTSMixer for mask pretraining.

forward

< >

( past_values: Tensor observed_mask: typing.Optional[torch.Tensor] = None output_hidden_states: typing.Optional[bool] = False return_loss: bool = True return_dict: typing.Optional[bool] = None ) β†’ transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForPreTrainingOutput or tuple(torch.FloatTensor)

Parameters

  • past_values (torch.FloatTensor of shape (batch_size, seq_length, num_input_channels)) — Context values of the time series. For a pretraining task, this denotes the input time series to predict the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, for classification or regression tasks, it denotes the appropriate context values of the time series.

    For univariate time series, num_input_channels dimension should be 1. For multivariate time series, it is greater than 1.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

    observed_mask (torch.FloatTensor of shape (batch_size, sequence_length, num_input_channels), optional): Boolean mask to indicate which past_values were observed and which were missing. Mask values selected in [0, 1]:

    • 1 for values that are observed,
    • 0 for values that are missing (i.e. NaNs that were replaced by zeros). return_loss (bool, optional): Whether to return the loss in the forward call.

Returns

transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForPreTrainingOutput or tuple(torch.FloatTensor)

A transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForPreTrainingOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (PatchTSMixerConfig) and inputs.

  • prediction_outputs (torch.FloatTensor of shape (batch_size, num_input_channels, num_patches, patch_length)) β€” Prediction output from the pretrain head.
  • hidden_states (tuple(torch.FloatTensor), optional) β€” Hidden-states of the model at the output of each layer.
  • last_hidden_state (torch.FloatTensor of shape (batch_size, num_input_channels, num_patches, d_model)) β€” Backbone embeddings before passing through the head.
  • loss (optional, returned when y is provided, torch.FloatTensor of shape ()) β€” Total loss

The PatchTSMixerForPretraining forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

PatchTSMixerForRegression

class transformers.PatchTSMixerForRegression

< >

( config: PatchTSMixerConfig )

Parameters

  • config (PatchTSMixerConfig, required) — Configuration.

PatchTSMixer for regression application.

forward

< >

( past_values: Tensor future_values: Tensor = None output_hidden_states: typing.Optional[bool] = False return_loss: bool = True return_dict: typing.Optional[bool] = None ) β†’ transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForRegressionOutput or tuple(torch.FloatTensor)

Parameters

  • past_values (torch.FloatTensor of shape (batch_size, seq_length, num_input_channels)) — Context values of the time series. For a pretraining task, this denotes the input time series to predict the masked portion. For a forecasting task, this denotes the history/past time series values. Similarly, for classification or regression tasks, it denotes the appropriate context values of the time series.

    For univariate time series, num_input_channels dimension should be 1. For multivariate time series, it is greater than 1.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

    future_values (torch.FloatTensor of shape (batch_size, target_len, num_input_channels) for forecasting, (batch_size, num_targets) for regression, or (batch_size,) for classification, optional): Target values of the time series, that serve as labels for the model. The future_values is what the Transformer needs during training to learn to output, given the past_values. Note that, this is NOT required for a pretraining task.

    For a forecasting task, the shape is be (batch_size, target_len, num_input_channels). Even if we want to forecast only specific channels by setting the indices in prediction_channel_indices parameter, pass the target data with all channels, as channel Filtering for both prediction and target will be manually applied before the loss computation.

    For a classification task, it has a shape of (batch_size,).

    For a regression task, it has a shape of (batch_size, num_targets). return_loss (bool, optional): Whether to return the loss in the forward call.

Returns

transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForRegressionOutput or tuple(torch.FloatTensor)

A transformers.models.patchtsmixer.modeling_patchtsmixer.PatchTSMixerForRegressionOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (PatchTSMixerConfig) and inputs.

  • prediction_outputs (torch.FloatTensor of shape (batch_size, num_targets)) β€” Prediction output from the regression head.
  • last_hidden_state (torch.FloatTensor of shape (batch_size, num_input_channels, num_patches, d_model)) β€” Backbone embeddings before passing through the head.
  • hidden_states (tuple(torch.FloatTensor), optional) β€” Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
  • loss (optional, returned when y is provided, torch.FloatTensor of shape ()) β€” Total loss.

The PatchTSMixerForRegression forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.