julien / model.py
elyx's picture
step 1, run_id uovmto44
70a23f9 verified
import logging
from typing import Any, Dict, Optional, Set, Tuple, Union
import peft
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import transformers.activations
import transformers.modeling_outputs
import transformers.models
from transformers.models.whisper import modeling_whisper as whisper
# We must use relative import in this directory to allow uploading to HF Hub
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
from team17.modeling.config import LossConfig, LossFunction, UltravoxConfig
class UltravoxModel(transformers.LlamaPreTrainedModel):
"""
The Ultravox model which consists of an audio encoder and a language model.
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
Parameters:
config: Model configuration class with all the parameters of the model.
"""
config_class = UltravoxConfig
config: UltravoxConfig # for type hinting
# Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
_keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
def __init__(self, config: UltravoxConfig):
super().__init__(config)
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
self.keep_params: Set[str] = set()
self.vocab_size = config.vocab_size
print(config)
self.audio_tower = self._create_audio_tower(config)
self.multi_modal_projector = self._create_multi_modal_projector(config)
self.language_model = self._create_language_model(config)
# Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
# FSDP throws an error if some of the layer types are not found in the model.
# This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
self._no_split_modules = (self.language_model._no_split_modules or []) + (
self.audio_tower._no_split_modules or []
)
self.loss_config = LossConfig()
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def set_loss_config(self, loss_config: LossConfig):
self.loss_config = loss_config
def _setup_cache(
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
):
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
def _reorder_cache(self, past_key_values, beam_idx):
return self.language_model._reorder_cache(past_key_values, beam_idx)
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(
new_num_tokens, pad_to_multiple_of
)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _compute_kl_loss(
self,
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
alt_input_ids: Optional[torch.Tensor] = None,
alt_attention_mask: Optional[torch.Tensor] = None,
alt_labels: Optional[torch.Tensor] = None,
**kwargs,
):
# disable gradient computation for the teacher model
with torch.no_grad():
# compute the teacher (text-only) model's distribution
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
alt_lm_output = self.language_model.forward(
inputs_embeds=alt_inputs_embeds,
labels=alt_labels,
attention_mask=alt_attention_mask,
past_key_values=past_key_values,
**kwargs,
)
# compute the KL divergence loss between the two models
kl_loss = F.kl_div(
F.log_softmax(
lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
dim=-1,
),
F.softmax(
alt_lm_output.logits[alt_labels != -100]
/ self.loss_config.kl_temperature,
dim=-1,
),
reduction="batchmean",
)
return {"loss": kl_loss}
def forward(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_len: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
# the alt_* fields are needed for KL divergence loss
alt_input_ids: Optional[torch.Tensor] = None,
alt_attention_mask: Optional[torch.Tensor] = None,
alt_labels: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
"""
Forward pass for the Ultravox model.
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
of the audio embeddings in the merged embeddings.
Args:
input_ids: The tokenized text input.
audio_values: The processed audio values.
inputs_embeds: The embeddings for the input tokens.
labels: The tokenized text labels.
attention_mask: The attention mask for the input.
position_ids: The position ids for the input.
past_key_values: The past key value cache for the language model attention layers.
**kwargs: Additional keyword arguments. Passed directly to the language model.
"""
if inputs_embeds is None:
# B x T -> B x T x D
inputs_embeds = self.get_input_embeddings().forward(input_ids)
if audio_values is not None:
assert (
audio_token_start_idx is not None and audio_token_len is not None
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
assert (
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
# B x A/3200 x D
audio_tower_output = self.audio_tower.forward(
audio_values.to(self.audio_tower.dtype),
audio_len=audio_len,
).last_hidden_state
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
# combine audio and text embeddings
for i, (audio, start, length) in enumerate(
zip(audio_embeds, audio_token_start_idx, audio_token_len)
):
length = min(length, audio.shape[0])
inputs_embeds[i, start : start + length] = audio[:length]
lm_output = self.language_model.forward(
inputs_embeds=inputs_embeds,
labels=labels,
attention_mask=attention_mask,
past_key_values=past_key_values,
**kwargs,
)
if self.training:
if self.loss_config.loss_function == LossFunction.CrossEntropy:
return lm_output
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
return self._compute_kl_loss(
lm_output=lm_output,
labels=labels,
past_key_values=past_key_values,
alt_input_ids=alt_input_ids,
alt_attention_mask=alt_attention_mask,
alt_labels=alt_labels,
**kwargs,
)
else:
raise ValueError(
f"Unsupported loss function: {self.loss_config.loss_function}"
)
else:
return lm_output
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.FloatTensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
audio_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> Dict[str, Any]:
model_input = self.language_model.prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
**kwargs,
)
# include audio information in model_input only when it is needed during prefilling
# audio_token_start_idx should always be relative to the current cache position
prefill_start_idx = 0 if cache_position is None else cache_position[0]
if (
audio_values is not None
and audio_token_start_idx is not None
and prefill_start_idx <= torch.max(audio_token_start_idx)
):
model_input["audio_values"] = audio_values
model_input["audio_token_start_idx"] = (
audio_token_start_idx - prefill_start_idx
)
model_input["audio_token_len"] = audio_token_len
model_input["audio_len"] = audio_len
return model_input
@classmethod
def _create_multi_modal_projector(
cls, config: UltravoxConfig
) -> "UltravoxProjector":
projector = UltravoxProjector(config)
projector.to(config.torch_dtype)
return projector
@classmethod
def _create_audio_tower(
cls, config: UltravoxConfig
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
if config.audio_model_id is not None:
if "whisper" in config.audio_model_id is not None:
audio_tower = ModifiedWhisperEncoder.from_pretrained(
config.audio_model_id, torch_dtype=config.torch_dtype
)
audio_tower.init_latency_mask(
config.audio_latency_block_size, dtype=config.torch_dtype
)
else:
assert (
config.audio_latency_block_size
not in (
None,
0,
)
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
audio_tower = transformers.AutoModel.from_pretrained(
config.audio_model_id, torch_dtype=config.torch_dtype
)
else:
if "whisper" in config.audio_config._name_or_path:
audio_tower = ModifiedWhisperEncoder(config.audio_config)
audio_tower.init_latency_mask(
config.audio_latency_block_size, dtype=config.torch_dtype
)
else:
assert (
config.audio_latency_block_size
not in (
None,
0,
)
), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
with transformers.modeling_utils.no_init_weights():
# we only ever use from_config if the weights are retrained, hence initializing is not
# required. This makes the model quite creation faster since init on CPU is quite slow.
audio_tower = transformers.AutoModel.from_config(
config.audio_config
)
if isinstance(
audio_tower,
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
):
# For these models we only need the encoder part
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
# WhisperModel -> WhisperEncoder
audio_tower = audio_tower.encoder
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
return audio_tower
@classmethod
def _create_language_model(
cls, config: UltravoxConfig
) -> transformers.LlamaForCausalLM:
if config.text_model_id is not None:
language_model = transformers.AutoModelForCausalLM.from_pretrained(
config.text_model_id,
attn_implementation=config._attn_implementation,
torch_dtype=config.torch_dtype,
)
else:
with transformers.modeling_utils.no_init_weights():
# we only ever use from_config if the weights are retrained, hence initializing is not
# required. This makes the model quite creation faster since init on CPU is quite slow.
language_model = transformers.AutoModelForCausalLM.from_config(
config.text_config,
attn_implementation=config._attn_implementation,
torch_dtype=config.torch_dtype,
)
language_model = apply_lora(language_model, config.text_model_lora_config)
return language_model
def merge_and_unload(self):
if isinstance(self.language_model, peft.PeftModel):
self.language_model = self.language_model.merge_and_unload()
# no need to download base language model weights anymore, so we can remove the id
self.config.text_model_id = None
self.keep_params.update(
set(
[
f"language_model.{name}"
for name, _ in self.language_model.named_parameters()
]
)
)
if isinstance(self.audio_tower, peft.PeftModel):
self.audio_tower = self.audio_tower.merge_and_unload()
# no need to download base audio model weights anymore, so we can remove the id
self.config.audio_model_id = None
self.keep_params.update(
set(
[
f"audio_tower.{name}"
for name, _ in self.audio_tower.named_parameters()
]
)
)
for param in ["text_model_lora_config", "audio_model_lora_config"]:
if hasattr(self.config, param):
delattr(self.config, param)
def push_to_hub(self, *args, **kwargs):
self.merge_and_unload()
self.to(self.language_model.dtype)
return super().push_to_hub(*args, **kwargs)
def save_pretrained(
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
):
if state_dict is None:
state_dict = super().state_dict()
named_params = dict(self.named_parameters())
state_dict = {
k: v
for k, v in state_dict.items()
if k in self.keep_params
or (k in named_params and named_params[k].requires_grad)
}
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
self.keep_params.update(set(state_dict.keys()))
def print_trainable_parameters(self):
"""
Prints the number of trainable parameters in the model (reuses Peft model's method)
"""
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
trainable_params, all_param = count_params(self)
logging.info(
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
)
lm_trainable_params, lm_all_params = count_params(self.language_model)
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
projector_trainable_params = (
trainable_params - lm_trainable_params - audio_trainable_params
)
projector_all_params = all_param - lm_all_params - audio_all_params
logging.info(
f"Trainable%: "
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
)
def is_cache_empty(
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]],
) -> bool:
"""
Check if the cache is empty.
"""
if past_key_values is None:
return True
if isinstance(past_key_values, tuple):
return all(len(c) == 0 for c in past_key_values)
return past_key_values.get_seq_length() == 0
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
"""
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
"""
lora_config = peft.LoraConfig(**lora_config or {})
if lora_config.r == 0:
# freeze the model entirely
for param in model.parameters():
param.requires_grad = False
else:
model = peft.get_peft_model(model, lora_config)
return model
class StackAudioFrames(nn.Module):
"""
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
In most cases this extra padding will get removed in the model's forward function so it has no effect.
"""
def __init__(self, stack_factor: int = 8):
super().__init__()
self.stack_factor = stack_factor
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
B, T, C = audio_embeds.shape
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
B, T, C = audio_embeds.shape
audio_embeds = audio_embeds.view(
B, T // self.stack_factor, C * self.stack_factor
)
return audio_embeds
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
super().__init__(hidden_size=hidden_size, eps=eps)
self.weight.data.fill_(init)
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
class UltravoxProjector(nn.Sequential):
def __init__(self, config: UltravoxConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim, init=config.norm_init)
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
dim = self.hidden_dim
self.act = transformers.activations.get_activation(config.projector_act)
dim = dim // 2 if config.projector_act == "swiglu" else dim
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
audio_features = self.ln_pre(audio_features)
hidden_states = self.linear_1(audio_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_post(hidden_states)
return hidden_states
class ModifiedWhisperEncoder(
whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
):
"""
Encoder portion of OpenAI's Whisper model.
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
2. allow less than 30 second of audio padding to be passed in:
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
- embed_pos is now sliced to match the length of `inputs_embeds`
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
"""
base_model_prefix = "model.encoder"
_no_split_modules = ["WhisperEncoderLayer"]
def init_latency_mask(self, audio_latency_block_size: int, dtype: torch.dtype):
if audio_latency_block_size is None:
self.audio_streaming_mask = None
return
# maximum sequence length
max_seqlen = (
self.config.max_source_positions
* self.conv1.stride[0]
* self.conv2.stride[0]
)
assert (
max_seqlen > 0
), f"maximum sequence length must be positive, got {max_seqlen}"
assert (
max_seqlen % audio_latency_block_size == 0
), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
# Given the block size, we calculate number of blocks.
audio_latency_nblocks = max_seqlen // audio_latency_block_size
audio_streaming_mask = (
torch.tril(
torch.ones(audio_latency_nblocks, audio_latency_nblocks),
diagonal=0,
)
.repeat_interleave(audio_latency_block_size, dim=0)
.repeat_interleave(audio_latency_block_size, dim=1)
)
audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
audio_streaming_mask = audio_streaming_mask[None, None, :, :]
self.register_buffer(
"audio_streaming_mask", audio_streaming_mask, persistent=False
)
def forward(
self,
input_features,
audio_len=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
expected_seq_length = (
self.config.max_source_positions
* self.conv1.stride[0]
* self.conv2.stride[0]
)
if input_features.shape[-1] > expected_seq_length:
raise ValueError(
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
)
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# Create attention mask based on audio lengths to mask out padding tokens
# For each sample in batch:
# - Convert raw audio length to feature length after convolutions
# - Create boolean mask that is True for valid positions and False for padding
# - Convert to extended attention mask format expected by transformer layers
# (1.0 for positions to attend to, large negative for positions to ignore)
# This masking ensures consistent behavior between training and inference
# by preventing the model from attending to padding tokens in both cases
attention_mask = None
if audio_len is not None:
audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
max_seq_len = hidden_states.shape[1]
attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
None, :
].lt(audio_feature_len.view(-1, 1))
attention_mask = self.get_extended_attention_mask(
attention_mask,
None,
device=hidden_states.device,
dtype=hidden_states.dtype,
)
if self.audio_streaming_mask is not None:
seqlen = hidden_states.size(-2)
if attention_mask is not None:
attention_mask = torch.minimum(
self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
) # merge
else:
attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
attention_mask = attention_mask.to(hidden_states.dtype)
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert (
head_mask.size()[0] == (len(self.layers))
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(
head_mask[idx] if head_mask is not None else None
),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, encoder_states, all_attentions]
if v is not None
)
return transformers.modeling_outputs.BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
UltravoxConfig.register_for_auto_class()
UltravoxModel.register_for_auto_class()
transformers.AutoConfig.register("ultravox", UltravoxConfig)
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
transformers.activations.ACT2FN["swiglu"] = SwiGLU