SetFit Polarity Model with BAAI/bge-m3
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses BAAI/bge-m3 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use a SetFit model to filter these possible aspect span candidates.
- Use this SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-m3
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: firqaaa/indo-setfit-absa-bert-base-restaurants-aspect
- SetFitABSA Polarity Model: firqaaa/indo-setfit-absa-bert-base-restaurants-polarity
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
netral |
|
negatif |
|
positif |
|
konflik |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7898 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"firqaaa/setfit-indo-absa-restaurants-aspect",
"firqaaa/setfit-indo-absa-restaurants-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 20.6594 | 62 |
Label | Training Sample Count |
---|---|
konflik | 34 |
negatif | 323 |
netral | 258 |
positif | 853 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.2345 | - |
0.0006 | 50 | 0.2337 | - |
0.0013 | 100 | 0.267 | - |
0.0019 | 150 | 0.2335 | - |
0.0025 | 200 | 0.2368 | - |
0.0032 | 250 | 0.2199 | - |
0.0038 | 300 | 0.2325 | - |
0.0045 | 350 | 0.2071 | - |
0.0051 | 400 | 0.2229 | - |
0.0057 | 450 | 0.1153 | - |
0.0064 | 500 | 0.1771 | 0.1846 |
0.0070 | 550 | 0.1612 | - |
0.0076 | 600 | 0.1487 | - |
0.0083 | 650 | 0.147 | - |
0.0089 | 700 | 0.1982 | - |
0.0096 | 750 | 0.1579 | - |
0.0102 | 800 | 0.1148 | - |
0.0108 | 850 | 0.1008 | - |
0.0115 | 900 | 0.2035 | - |
0.0121 | 950 | 0.1348 | - |
0.0127 | 1000 | 0.0974 | 0.182 |
0.0134 | 1050 | 0.121 | - |
0.0140 | 1100 | 0.1949 | - |
0.0147 | 1150 | 0.2424 | - |
0.0153 | 1200 | 0.0601 | - |
0.0159 | 1250 | 0.0968 | - |
0.0166 | 1300 | 0.0137 | - |
0.0172 | 1350 | 0.034 | - |
0.0178 | 1400 | 0.1217 | - |
0.0185 | 1450 | 0.0454 | - |
0.0191 | 1500 | 0.0397 | 0.2216 |
0.0198 | 1550 | 0.0226 | - |
0.0204 | 1600 | 0.0939 | - |
0.0210 | 1650 | 0.0537 | - |
0.0217 | 1700 | 0.0566 | - |
0.0223 | 1750 | 0.162 | - |
0.0229 | 1800 | 0.0347 | - |
0.0236 | 1850 | 0.103 | - |
0.0242 | 1900 | 0.0615 | - |
0.0249 | 1950 | 0.0589 | - |
0.0255 | 2000 | 0.1668 | 0.2132 |
0.0261 | 2050 | 0.1809 | - |
0.0268 | 2100 | 0.0579 | - |
0.0274 | 2150 | 0.088 | - |
0.0280 | 2200 | 0.1047 | - |
0.0287 | 2250 | 0.1255 | - |
0.0293 | 2300 | 0.0312 | - |
0.0300 | 2350 | 0.0097 | - |
0.0306 | 2400 | 0.0973 | - |
0.0312 | 2450 | 0.0066 | - |
0.0319 | 2500 | 0.0589 | 0.2591 |
0.0325 | 2550 | 0.0529 | - |
0.0331 | 2600 | 0.0169 | - |
0.0338 | 2650 | 0.0455 | - |
0.0344 | 2700 | 0.0609 | - |
0.0350 | 2750 | 0.1151 | - |
0.0357 | 2800 | 0.0031 | - |
0.0363 | 2850 | 0.0546 | - |
0.0370 | 2900 | 0.0051 | - |
0.0376 | 2950 | 0.0679 | - |
0.0382 | 3000 | 0.0046 | 0.2646 |
0.0389 | 3050 | 0.011 | - |
0.0395 | 3100 | 0.0701 | - |
0.0401 | 3150 | 0.0011 | - |
0.0408 | 3200 | 0.011 | - |
0.0414 | 3250 | 0.0026 | - |
0.0421 | 3300 | 0.0027 | - |
0.0427 | 3350 | 0.0012 | - |
0.0433 | 3400 | 0.0454 | - |
0.0440 | 3450 | 0.0011 | - |
0.0446 | 3500 | 0.0012 | 0.2602 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- spaCy: 3.7.4
- Transformers: 4.36.2
- PyTorch: 2.1.2+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 21
Inference API (serverless) has been turned off for this model.