ESPnet2 ASR model

fujie/espnet_asr_cbs_transducer_120303_hop132_cc0105

This model was trained by Shinya Fujie using cejc_alt recipe in espnet.

Demo: How to use in ESPnet2

Follow the ESPnet installation instructions if you haven't done that already.

cd espnet
git checkout 4c1c38f2c9c6a105ff4cffa8c833b0eb47f501a4
pip install -e .
cd egs2/cejc_alt/asr1
./run.sh --skip_data_prep false --skip_train true --download_model fujie/espnet_asr_cbs_transducer_120303_hop132_cc0105

RESULTS

Environments

  • date: Sun Mar 10 16:16:24 JST 2024
  • python version: 3.11.7 (main, Dec 15 2023, 18:12:31) [GCC 11.2.0]
  • espnet version: espnet 202402
  • pytorch version: pytorch 2.1.0+cu121
  • Git hash: bf3653d6bd16c10a1df83f1db07e681374453f75
    • Commit date: Wed Mar 6 17:25:02 2024 +0900

exp/asr_train_asr_cbs_transducer_120303_hop132_cc0105

WER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval10f 953 11908 89.2 5.7 5.1 3.0 13.8 58.0
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval10m 957 16092 93.8 2.9 3.3 2.1 8.3 55.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval1_csj 1400 63362 94.9 3.0 2.1 1.2 6.3 69.5
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval20f 1466 18326 90.5 5.1 4.4 2.5 12.0 55.0
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval20m 1772 23756 89.0 5.8 5.2 2.8 13.8 56.6
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval2_csj 1413 64151 96.2 2.3 1.5 0.9 4.7 67.9
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval30f 1734 24116 93.6 3.4 3.0 2.3 8.8 48.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval30m 1688 20116 85.2 8.0 6.8 3.5 18.3 59.4
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval3_csj 1437 40131 96.3 2.0 1.8 1.2 4.9 52.6
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval40f 1477 20717 90.3 4.2 5.4 2.5 12.2 53.2
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval40m 1498 24747 92.4 3.5 4.1 2.3 9.9 55.7
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval50f 1450 26584 95.4 2.0 2.6 1.8 6.4 49.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval50m 1499 22572 92.0 4.1 4.0 2.4 10.4 54.6
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval60f 1335 21810 92.6 3.5 3.9 2.5 9.8 54.9
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval60m 1621 24151 89.5 5.0 5.4 2.3 12.8 62.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval70f 906 9542 88.7 5.7 5.6 3.4 14.7 53.4
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval70m 894 12490 92.9 3.5 3.5 2.6 9.7 51.6

CER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval10f 953 24583 91.5 3.5 5.0 3.1 11.6 58.0
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval10m 957 33749 94.9 1.6 3.5 2.4 7.5 55.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval1_csj 1400 139085 96.0 1.5 2.5 1.4 5.4 69.5
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval20f 1466 37024 92.3 3.1 4.6 2.6 10.4 55.0
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval20m 1772 47838 91.4 3.6 5.1 2.8 11.4 56.6
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval2_csj 1413 140081 97.0 1.0 2.0 1.2 4.2 67.9
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval30f 1734 48968 94.6 2.1 3.3 2.7 8.0 48.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval30m 1688 41067 88.4 4.9 6.7 3.5 15.1 59.4
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval3_csj 1437 86583 96.8 0.8 2.3 1.5 4.7 52.6
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval40f 1477 42609 91.7 2.8 5.5 2.4 10.7 53.2
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval40m 1498 51748 93.2 2.1 4.7 2.5 9.3 55.7
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval50f 1450 54181 95.8 1.4 2.8 1.9 6.1 49.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval50m 1499 46031 93.4 2.6 4.0 2.4 9.0 54.6
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval60f 1335 45028 93.9 2.0 4.2 2.7 8.9 54.9
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval60m 1621 49442 91.4 3.0 5.6 2.5 11.1 62.1
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval70f 906 19386 90.7 3.7 5.6 3.6 12.9 53.4
decode_cbs_transducer_asr_model_valid.cer_transducer.ave_10best/eval70m 894 26203 94.1 2.1 3.7 3.0 8.9 51.6

TER

dataset Snt Wrd Corr Sub Del Ins Err S.Err

ASR config

expand
config: myconf/train_asr_cbs_transducer_120303_hop132_silver11.yaml
print_config: false
log_level: INFO
drop_last_iter: false
dry_run: false
iterator_type: sequence
valid_iterator_type: null
output_dir: exp/asr_train_asr_cbs_transducer_120303_hop132_cc0105
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 0
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 100
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - cer_transducer
    - min
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5
grad_clip_type: 2.0
grad_noise: false
accum_grad: 6
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: true
wandb_project: espnet_ninjal
wandb_id: null
wandb_entity: null
wandb_name: cejc_cbs_td_120303_hop132_cc0105
wandb_model_log_interval: -1
detect_anomaly: false
use_lora: false
save_lora_only: true
lora_conf: {}
pretrain_path: null
init_param:
- ./exp/asr_train_asr_cbs_transducer_081616_hop132/valid.cer_transducer.ave_10best.pth
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 2000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_jp_word_cc0105/train/speech_shape
- exp/asr_stats_raw_jp_word_cc0105/train/text_shape.word
valid_shape_file:
- exp/asr_stats_raw_jp_word_cc0105/valid/speech_shape
- exp/asr_stats_raw_jp_word_cc0105/valid/text_shape.word
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
chunk_default_fs: null
train_data_path_and_name_and_type:
-   - dump/raw/train_nodup_cc_01_05/wav.scp
    - speech
    - sound
-   - dump/raw/train_nodup_cc_01_05/text
    - text
    - text
valid_data_path_and_name_and_type:
-   - dump/raw/train_dev_cc/wav.scp
    - speech
    - sound
-   - dump/raw/train_dev_cc/text
    - text
    - text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
allow_multi_rates: false
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
    lr: 0.002
scheduler: warmuplr
scheduler_conf:
    warmup_steps: 25000
token_list:
- <blank>
- <unk>
- <mask>
- '|'
- ー
- ン
- イ
- ト
- カ
- ノ
- <sp>
- テ
- デ
- タ
- シ
- ス
- ナ
- ッ
- コ
- オ
- ニ
- マ
- ワ
- ガ
- ク
- モ
- ー+F
- ル
- キ
- レ
- エ+F
- ラ
- リ
- ア
- ケ
- ツ
- ソ
- ユ
- ド
- サ
- セ
- ヨ
- ダ
- エ
- チ
- ジ
- ア+F
- ノ+F
- ネ
- ホ
- マ+F
- ハ
- ゴ
- ミ
- ロ
- ブ
- バ
- ヤ
- ヒ
- メ
- ウ
- フ
- ショ
- ジョ
- ジュ
- ズ
- ゲ
- シュ
- ム
- チョ
- ト+F
- キョ
- グ
- パ
- ベ
- シャ
- ゼ
- ソ+F
- ン+F
- ギ
- ザ
- ビ
- キュ
- ボ
- リョ
- ヘ
- ゾ
- プ
- ン+D
- チュ
- ジャ
- ウ+F
- オ+F
- ッ+F
- ヒョ
- チャ
- イ+D
- ヌ
- ス+D
- ポ
- ピ
- ディ
- ティ
- ギョ
- ニュ
- オ+D
- イ+F
- ー+D
- ヒャ
- シ+D
- ペ
- ッ+D
- ウ+D
- ア+D
- カ+D
- キャ
- ク+D
- コ+D
- ナ+D
- ツ+D
- エ+D
- ト+D
- ビョ
- ジェ
- リュ
- タ+D
- ピョ
- ハ+D
- ヒ+D
- ファ
- ノ+D
- キ+D
- ニ+D
- ギャ
- ハ+F
- モ+D
- フィ
- ソ+D
- フ+D
- ワ+D
- ホ+D
- ジ+D
- マ+D
- ヨ+D
- デ+D
- サ+D
- ガ+D
- ユ+D
- セ+D
- フォ
- ム+D
- ダ+D
- テ+D
- チ+D
- ヤ+D
- ケ+D
- トゥ
- ル+D
- ラ+D
- ウォ
- リャ
- ミ+D
- ド+D
- シュ+D
- リ+D
- ズ+D
- ヘ+F
- ウェ
- レ+D
- ピュ
- ブ+D
- フェ
- ミョ
- グ+D
- ヌ+D
- トゥ+D
- テュ
- ヘ+D
- ロ+D
- チェ
- ゴ+D
- ジュ+D
- ミュ
- ビャ
- ネ+F
- ピャ
- ショ+D
- メ+D
- ミャ
- ギュ
- ネ+D
- バ+D
- スィ
- ゲ+D
- ビュ
- ニョ
- ジョ+D
- チョ+D
- ス+F
- ゼ+D
- デ+F
- キョ+D
- ヤ+F
- チュ+D
- プ+D
- ワ+F
- ギ+D
- ウィ
- ベ+D
- シェ
- ボ+D
- パ+D
- ドゥ+D
- ニャ
- シャ+D
- ドゥ
- ザ+D
- ヒョ+D
- レ+F
- ツォ
- ビ+D
- ド+F
- ニュ+D
- キュ+D
- リョ+D
- デュ
- ヒュ
- ディ+D
- ゾ+D
- ティ+D
- フ+F
- ラ+F
- ナ+F
- ピ+D
- リュ+D
- ヒャ+D
- ジャ+D
- ヒュ+D
- チャ+D
- ツァ
- ポ+D
- ニョ+D
- ツェ
- ヌ+F
- ズィ
- キャ+D
- ホ+F
- ペ+D
- ヴィ
- ツ+F
- ギョ+D
- ファ+D
- ウェ+D
- ウォ+D
- ツォ+F
- ジェ+D
- メ+F
- フィ+D
- バ+F
- ニャ+D
- ギャ+D
- ビョ+D
- ツィ
- フォ+D
- スィ+D
- ウィ+D
- リャ+D
- モ+F
- チェ+D
- フュ
- テュ+D
- ロ+F
- デュ+D
- シェ+D
- イェ
- ム+F
- ニェ
- ツォ+D
- トゥ+F
- カ+F
- ミャ+D
- ミョ+D
- ギュ+D
- ミュ+D
- ツァ+D
- フェ+D
- ガ+F
- クヮ
- ヨ+F
- テ+F
- ヒ+F
- ズィ+D
- グヮ
- ウェ+F
- ビュ+D
- イェ+D
- ユ+F
- イェ+F
- ツェ+D
- パ+F
- ヴァ
- チョ+F
- ニョ+F
- ダ+F
- ニェ+D
- ル+F
- ゼ+F
- ゾ+F
- ニェ+F
- リャ+F
- ミャ+F
- ヴェ
- ショ+F
- キャ+F
- ゲ+F
- ピュ+D
- ク+F
- ニャ+F
- ケ+F
- ヴ
- チャ+F
- タ+F
- グ+F
- ヴォ
- ミェ
- ヒャ+F
- ファ+F
- フェ+F
- ビャ+D
- ブ+F
- ズ+F
- ジェ+F
- ピャ+D
- ツィ+D
- リ+F
- セ+F
- サ+F
- ドゥ+F
- ウォ+F
- グヮ+D
- ベ+F
- ザ+F
- クヮ+D
- ヒェ+D
- シ+F
- フュ+D
- ヴィ+D
- テュ+F
- ミェ+D
- ボ+F
- ジャ+F
- ヴァ+D
- ジ+F
- チ+F
- ゴ+F
- ピョ+D
- ヒェ
- ニ+F
- シュ+F
- ミュ+F
- <sos/eos>
init: null
input_size: null
ctc_conf:
    dropout_rate: 0.0
    ctc_type: builtin
    reduce: true
    ignore_nan_grad: null
    zero_infinity: true
    brctc_risk_strategy: exp
    brctc_group_strategy: end
    brctc_risk_factor: 0.0
joint_net_conf:
    joint_space_size: 640
use_preprocessor: true
use_lang_prompt: false
use_nlp_prompt: false
token_type: word
bpemodel: null
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
aux_ctc_tasks: []
frontend: default
frontend_conf:
    hop_length: 132
    fs: 16k
specaug: specaug
specaug_conf:
    apply_time_warp: true
    time_warp_window: 5
    time_warp_mode: bicubic
    apply_freq_mask: true
    freq_mask_width_range:
    - 0
    - 30
    num_freq_mask: 2
    apply_time_mask: true
    time_mask_width_range:
    - 0
    - 40
    num_time_mask: 2
normalize: global_mvn
normalize_conf:
    stats_file: exp/asr_stats_raw_jp_word_cc0105/train/feats_stats.npz
model: espnet
model_conf:
    ctc_weight: 0.0
    report_cer: true
    report_wer: true
preencoder: null
preencoder_conf: {}
encoder: contextual_block_conformer
encoder_conf:
    output_size: 256
    attention_heads: 4
    linear_units: 2048
    num_blocks: 12
    dropout_rate: 0.1
    positional_dropout_rate: 0.1
    attention_dropout_rate: 0.0
    input_layer: conv2d
    normalize_before: true
    activation_type: swish
    macaron_style: true
    use_cnn_module: true
    cnn_module_kernel: 15
    block_size: 18
    hop_size: 3
    look_ahead: 3
    init_average: true
    ctx_pos_enc: true
postencoder: null
postencoder_conf: {}
decoder: transducer
decoder_conf:
    rnn_type: lstm
    num_layers: 1
    hidden_size: 512
    dropout: 0.1
    dropout_embed: 0.2
preprocessor: default
preprocessor_conf: {}
required:
- output_dir
- token_list
version: '202402'
distributed: false

Citing ESPnet

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}





or arXiv:

@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit},
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.