metadata
pipeline_tag: token-classification
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
tags:
- distilbert
task: token-classification
Backend: sagemaker-training
Backend args: {'instance_type': 'ml.g4dn.2xlarge', 'supported_instructions': None}
Number of evaluation samples: All dataset
Fixed parameters:
- model_name_or_path:
elastic/distilbert-base-uncased-finetuned-conll03-english
- dataset:
- path:
conll2003
- eval_split:
validation
- data_keys:
{'primary': 'tokens'}
- ref_keys:
['ner_tags']
- calibration_split:
train
- path:
- quantization_approach:
static
- operators_to_quantize:
['Add', 'MatMul']
- per_channel:
False
- calibration:
- method:
minmax
- num_calibration_samples:
100
- method:
- framework:
onnxruntime
- framework_args:
- opset:
11
- optimization_level:
1
- opset:
- aware_training:
False
Benchmarked parameters:
- node_exclusion:
[]
,['layernorm', 'gelu', 'residual', 'gather', 'softmax']
Evaluation
Non-time metrics
node_exclusion | precision (original) | precision (optimized) | recall (original) | recall (optimized) | f1 (original) | f1 (optimized) | accuracy (original) | accuracy (optimized) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
['layernorm', 'gelu', 'residual', 'gather', 'softmax'] |
| | 0.936 | 0.904 | | | 0.944 | 0.921 | | | 0.940 | 0.912 | | | 0.988 | 0.984 |
[] |
| | 0.936 | 0.065 | | | 0.944 | 0.243 | | | 0.940 | 0.103 | | | 0.988 | 0.357 |
Time metrics
Time benchmarks were run for 15 seconds per config.
Below, time metrics for batch size = 4, input length = 64.
node_exclusion | latency_mean (original, ms) | latency_mean (optimized, ms) | throughput (original, /s) | throughput (optimized, /s) | ||
---|---|---|---|---|---|---|
['layernorm', 'gelu', 'residual', 'gather', 'softmax'] |
| | 114.51 | 53.59 | | | 8.73 | 18.67 |
[] |
| | 90.67 | 59.55 | | | 11.07 | 16.87 |