wavlm-large

This model is a fine-tuned version of microsoft/wavlm-large on the galsenai/waxal_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5936
  • Accuracy: 0.8950
  • Precision: 0.9789
  • F1: 0.9334

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 32.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision F1
4.7405 1.01 500 5.1525 0.0 0.0 0.0
4.4299 2.02 1000 5.8969 0.0 0.0 0.0
4.2868 3.04 1500 4.9304 0.0019 0.0031 0.0023
3.6242 4.05 2000 4.3396 0.0409 0.0224 0.0237
2.686 5.06 2500 3.9399 0.0549 0.0320 0.0308
1.9284 6.07 3000 3.7736 0.0500 0.0779 0.0442
1.3936 7.08 3500 3.5380 0.0947 0.1381 0.0916
1.0764 8.1 4000 3.3281 0.1584 0.3514 0.1839
0.872 9.11 4500 2.9592 0.2755 0.6027 0.3315
0.7026 10.12 5000 2.5049 0.3971 0.6971 0.4587
0.603 11.13 5500 2.1485 0.5479 0.8074 0.6129
0.5042 12.15 6000 1.6532 0.7014 0.8604 0.7544
0.4542 13.16 6500 1.4057 0.7435 0.8941 0.7990
0.388 14.17 7000 1.2338 0.7802 0.9219 0.8332
0.3515 15.18 7500 0.9898 0.8170 0.9433 0.8681
0.3195 16.19 8000 1.1404 0.8067 0.9523 0.8635
0.2882 17.21 8500 0.9811 0.8177 0.9540 0.8746
0.2695 18.22 9000 0.9483 0.8318 0.9616 0.8878
0.2535 19.23 9500 0.6694 0.8844 0.9692 0.9198
0.2437 20.24 10000 0.7546 0.8700 0.9656 0.9125
0.2376 21.25 10500 0.6698 0.8810 0.9695 0.9202
0.2214 22.27 11000 0.7156 0.8727 0.9726 0.9174
0.2148 23.28 11500 0.5982 0.8931 0.9711 0.9286
0.2087 24.29 12000 0.7109 0.8814 0.9757 0.9243
0.2039 25.3 12500 0.6577 0.8897 0.9799 0.9306
0.1997 26.32 13000 0.7307 0.8746 0.9774 0.9203
0.1896 27.33 13500 0.6143 0.8905 0.9748 0.9290
0.1869 28.34 14000 0.6380 0.8909 0.9739 0.9287
0.185 29.35 14500 0.6932 0.8871 0.9791 0.9289
0.1813 30.36 15000 0.5936 0.8950 0.9789 0.9334
0.1801 31.38 15500 0.6150 0.8947 0.9801 0.9334

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.