TinyMistral-248Mx4-MOE

TinyMistral-248Mx4-MOE is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: Locutusque/TinyMistral-248M-v2-Instruct
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: M4-ai/TinyMistral-248M-v2-cleaner
    positive_prompts:
    - "versatile"
    - "helpful"
    - "factual"
    - "integrated"
    - "adaptive"
    - "comprehensive"
    - "balanced"
    negative_prompts:
    - "specialized"
    - "narrow"
    - "focused"
    - "limited"
    - "specific"

  - source_model: Locutusque/TinyMistral-248M-Instruct
    positive_prompts:
    - "creative"
    - "chat"
    - "discuss"
    - "culture"
    - "world"
    - "expressive"
    - "detailed"
    - "imaginative"
    - "engaging"
    negative_prompts:
    - "sorry"
    - "cannot"
    - "factual"
    - "concise"
    - "straightforward"
    - "objective"
    - "dry"

  - source_model: jtatman/tinymistral-v2-pycoder-instuct-248m
    positive_prompts:
    - "analytical"
    - "accurate"
    - "logical"
    - "knowledgeable"
    - "precise"
    - "calculate"
    - "compute"
    - "solve"
    - "work"
    - "python"
    - "javascript"
    - "programming"
    - "algorithm"
    - "tell me"
    - "assistant"
    negative_prompts:
    - "creative"
    - "abstract"
    - "imaginative"
    - "artistic"
    - "emotional"
    - "mistake"
    - "inaccurate"

  - source_model: Locutusque/TinyMistral-248M-v2-Instruct
    positive_prompts:
    - "instructive"
    - "clear"
    - "directive"
    - "helpful"
    - "informative"
    negative_prompts:
    - "exploratory"
    - "open-ended"
    - "narrative"
    - "speculative"
    - "artistic"

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "222gate/TinyMistral-248Mx4-MOE"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 30.08
AI2 Reasoning Challenge (25-Shot) 29.52
HellaSwag (10-Shot) 25.71
MMLU (5-Shot) 24.82
TruthfulQA (0-shot) 48.66
Winogrande (5-shot) 51.78
GSM8k (5-shot) 0.00
Downloads last month
18
Safetensors
Model size
701M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gate369/TinyMistral-248Mx4-MOE-not-tuned-pls-help

Evaluation results