YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Gretel's baseline text2table was fine-tuned on togethercomputer's RedPajama-INCITE-instruct-3B-v1 model for 100 epochs on 8A100 80GB gpu's. The fine-tuning used ~2k training samples (text and table pairs) that were generated using OpenAI.
Data Formatting
INSTRUCTION_KEY = "### Instruction: Given the following prompt, generate a table"
RESPONSE_KEY = "### Response:"
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{prompt_to_generate_table}
{response_key}
{table}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
prompt_to_generate_table"{PROMPT}",
response_key=RESPONSE_KEY,
table="{TABLE}"
)
For generation purposes:
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
tokenizer = AutoTokenizer.from_pretrained('togethercomputer/RedPajama-INCITE-Instruct-3B-v1', padding_side="right")
model = AutoModelForCausalLM.from_pretrained('gretelai/text2table').to('cuda')
model.eval()
INSTRUCTION_KEY = "### Instruction: Given the following prompt, generate a table."
RESPONSE_KEY = "### Response:"
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
PROMPT_FOR_GENERATION_FORMAT = """{intro}
{instruction_key}
{prompt_to_generate_table}
{response_key}
""".format(
intro=INTRO_BLURB,
instruction_key=INSTRUCTION_KEY,
prompt_to_generate_table="{prompt_to_generate_table}",
response_key=RESPONSE_KEY,
)
PROMPT = "Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment."
inputs = PROMPT_FOR_GENERATION_FORMAT.format(prompt_to_generate_table=PROMPT)
tokenizer.pad_token = tokenizer.eos_token
input = tokenizer(inputs, return_tensors="pt").to('cuda')
input_ids = input['input_ids']
outputs = model.generate(**input, max_length = 1024)
table = tokenizer.decode(outputs[0], skip_special_tokens=False)
Output
PROMPT = "Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment."
MODEL GENERATION ->
Below is an instruction that describes a task. Write a response that appropriately completes the request.
Instruction: Given the following prompt, generate a table. Each column should have random values.
Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment.
Response:
patient,sex,agegrp,bp_before,bp_after
1.0,F,45.0,183.0,124.0,234.0
2.0,F,60.0,183.0,124.0,183.0
3.0,F,70.0,179.0,117.0,183.0
4.0,M,30.0,141.0,136.0,161.0
5.0,M,70.0,147.0,129.0,157.0
6.0,M,40.0,140.0,136.0,156.0
7.0,M,60.0,140.0,116.0,157.0
8.0,M,70.0,144.0,131.0,161.0
9.0,M,60.0,142.0,119.0,157.0
10.0,M,70.0,147.0,132.0,167.0
11.0,M,60.0,147.0,136.0,166.0
12.0,M,70.0,150.0,132.0,172.0
13.0,M,60.0,149.0,137.0,162.0
14.0,M,70.0,156.0,124.0,157.0
15.0,M,60.0,156.0,181.0,157.0
16.0,M,70.0,156.0,131.0,158.0
- Downloads last month
- 31
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.