h2oGPT Model Card
Summary
H2O.ai's h2ogpt-oig-oasst1-256-6_9b
is a 6.9 billion parameter instruction-following large language model licensed for commercial use.
- Base model: EleutherAI/pythia-6.9b
- Fine-tuning dataset: h2oai/h2ogpt-oig-oasst1-instruct-cleaned-v1
- Data-prep and fine-tuning code: H2O.ai Github
- Training logs: zip
Usage
To use the model with the transformers
library on a machine with GPUs, first make sure you have the transformers
and accelerate
libraries installed.
pip install transformers==4.28.1
pip install accelerate==0.18.0
import torch
from transformers import pipeline
generate_text = pipeline(model="h2oai/h2ogpt-oig-oasst1-256-6_9b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", prompt_type='human_bot')
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
Alternatively, if you prefer to not use trust_remote_code=True
you can download instruct_pipeline.py,
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6_9b", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oig-oasst1-256-6_9b", torch_dtype=torch.bfloat16, device_map="auto")
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer, prompt_type='human_bot')
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100)
print(res[0]["generated_text"])
Model Architecture
GPTNeoXForCausalLM(
(gpt_neox): GPTNeoXModel(
(embed_in): Embedding(50432, 4096)
(layers): ModuleList(
(0-31): 32 x GPTNeoXLayer(
(input_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
(attention): GPTNeoXAttention(
(rotary_emb): RotaryEmbedding()
(query_key_value): Linear(in_features=4096, out_features=12288, bias=True)
(dense): Linear(in_features=4096, out_features=4096, bias=True)
)
(mlp): GPTNeoXMLP(
(dense_h_to_4h): Linear(in_features=4096, out_features=16384, bias=True)
(dense_4h_to_h): Linear(in_features=16384, out_features=4096, bias=True)
(act): GELUActivation()
)
)
)
(final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True)
)
(embed_out): Linear(in_features=4096, out_features=50432, bias=False)
)
Model Configuration
GPTNeoXConfig {
"_name_or_path": "h2oai/h2ogpt-oig-oasst1-256-6_9b",
"architectures": [
"GPTNeoXForCausalLM"
],
"bos_token_id": 0,
"custom_pipelines": {
"text-generation": {
"impl": "h2oai_pipeline.H2OTextGenerationPipeline",
"pt": "AutoModelForCausalLM"
}
},
"eos_token_id": 0,
"hidden_act": "gelu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 16384,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 2048,
"model_type": "gpt_neox",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"rotary_emb_base": 10000,
"rotary_pct": 0.25,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.28.1",
"use_cache": true,
"use_parallel_residual": true,
"vocab_size": 50432
}
- Downloads last month
- 857