metadata
base_model: openai/clip-vit-base-patch32
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: document-crop
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9021739130434783
document-crop
This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7682
- Accuracy: 0.9022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 250
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6337 | 2.6667 | 20 | 0.6879 | 0.5870 |
0.4336 | 5.3333 | 40 | 0.7280 | 0.6413 |
0.2493 | 8.0 | 60 | 0.5044 | 0.75 |
0.1756 | 10.6667 | 80 | 0.3750 | 0.8478 |
0.1715 | 13.3333 | 100 | 0.7468 | 0.6957 |
0.1525 | 16.0 | 120 | 0.6240 | 0.7935 |
0.2019 | 18.6667 | 140 | 0.3115 | 0.8804 |
0.1366 | 21.3333 | 160 | 0.8020 | 0.7391 |
0.1729 | 24.0 | 180 | 0.7651 | 0.7283 |
0.1499 | 26.6667 | 200 | 0.6695 | 0.7826 |
0.1226 | 29.3333 | 220 | 0.5607 | 0.8370 |
0.1426 | 32.0 | 240 | 0.5363 | 0.8152 |
0.0986 | 34.6667 | 260 | 0.2214 | 0.9022 |
0.0984 | 37.3333 | 280 | 0.2494 | 0.9022 |
0.1764 | 40.0 | 300 | 0.3202 | 0.9022 |
0.0712 | 42.6667 | 320 | 0.6895 | 0.8370 |
0.104 | 45.3333 | 340 | 0.8008 | 0.75 |
0.107 | 48.0 | 360 | 0.6523 | 0.8696 |
0.1446 | 50.6667 | 380 | 0.4615 | 0.8370 |
0.0525 | 53.3333 | 400 | 0.5936 | 0.9130 |
0.1076 | 56.0 | 420 | 0.5063 | 0.9022 |
0.0554 | 58.6667 | 440 | 0.4740 | 0.8913 |
0.0701 | 61.3333 | 460 | 0.4842 | 0.8587 |
0.1011 | 64.0 | 480 | 0.5180 | 0.8587 |
0.0471 | 66.6667 | 500 | 1.6979 | 0.7717 |
0.0559 | 69.3333 | 520 | 0.4181 | 0.9022 |
0.0371 | 72.0 | 540 | 0.4239 | 0.9022 |
0.0653 | 74.6667 | 560 | 0.2725 | 0.9239 |
0.0564 | 77.3333 | 580 | 0.8607 | 0.8043 |
0.0427 | 80.0 | 600 | 0.2848 | 0.9457 |
0.1251 | 82.6667 | 620 | 0.3903 | 0.9022 |
0.023 | 85.3333 | 640 | 0.4514 | 0.9239 |
0.0297 | 88.0 | 660 | 0.7634 | 0.8913 |
0.0553 | 90.6667 | 680 | 0.5395 | 0.8913 |
0.0147 | 93.3333 | 700 | 0.7752 | 0.8696 |
0.0804 | 96.0 | 720 | 0.6780 | 0.8913 |
0.0154 | 98.6667 | 740 | 0.7887 | 0.8587 |
0.0063 | 101.3333 | 760 | 0.5492 | 0.9239 |
0.0131 | 104.0 | 780 | 0.8119 | 0.8804 |
0.0113 | 106.6667 | 800 | 1.0839 | 0.8587 |
0.0268 | 109.3333 | 820 | 1.0396 | 0.8587 |
0.0215 | 112.0 | 840 | 0.8707 | 0.9022 |
0.0271 | 114.6667 | 860 | 0.5733 | 0.9457 |
0.0208 | 117.3333 | 880 | 0.6780 | 0.9130 |
0.0224 | 120.0 | 900 | 0.3565 | 0.9457 |
0.0324 | 122.6667 | 920 | 0.3860 | 0.9239 |
0.019 | 125.3333 | 940 | 0.5652 | 0.9022 |
0.0079 | 128.0 | 960 | 0.5316 | 0.9348 |
0.0064 | 130.6667 | 980 | 0.5368 | 0.9239 |
0.0055 | 133.3333 | 1000 | 0.8009 | 0.8913 |
0.0156 | 136.0 | 1020 | 0.8391 | 0.9348 |
0.04 | 138.6667 | 1040 | 0.6336 | 0.9022 |
0.0031 | 141.3333 | 1060 | 0.5656 | 0.9348 |
0.0009 | 144.0 | 1080 | 0.4957 | 0.9348 |
0.0004 | 146.6667 | 1100 | 0.9136 | 0.8913 |
0.006 | 149.3333 | 1120 | 0.9782 | 0.8913 |
0.0004 | 152.0 | 1140 | 0.9065 | 0.9239 |
0.0042 | 154.6667 | 1160 | 0.9944 | 0.9130 |
0.0001 | 157.3333 | 1180 | 0.8723 | 0.9239 |
0.0002 | 160.0 | 1200 | 1.1987 | 0.8804 |
0.0083 | 162.6667 | 1220 | 0.7118 | 0.9239 |
0.0 | 165.3333 | 1240 | 0.7793 | 0.9130 |
0.0 | 168.0 | 1260 | 0.7330 | 0.9239 |
0.0038 | 170.6667 | 1280 | 0.5990 | 0.9348 |
0.0001 | 173.3333 | 1300 | 0.6496 | 0.9239 |
0.0 | 176.0 | 1320 | 0.8535 | 0.8913 |
0.0 | 178.6667 | 1340 | 0.6108 | 0.9348 |
0.0 | 181.3333 | 1360 | 0.5813 | 0.9348 |
0.0 | 184.0 | 1380 | 0.5817 | 0.9239 |
0.0 | 186.6667 | 1400 | 0.5852 | 0.9239 |
0.0 | 189.3333 | 1420 | 0.5877 | 0.9239 |
0.0 | 192.0 | 1440 | 0.5941 | 0.9239 |
0.0 | 194.6667 | 1460 | 0.6219 | 0.9130 |
0.0 | 197.3333 | 1480 | 0.6350 | 0.9130 |
0.0 | 200.0 | 1500 | 0.6388 | 0.9130 |
0.0 | 202.6667 | 1520 | 0.6409 | 0.9130 |
0.0 | 205.3333 | 1540 | 0.6423 | 0.9130 |
0.0 | 208.0 | 1560 | 0.6430 | 0.9130 |
0.0 | 210.6667 | 1580 | 0.6336 | 0.9130 |
0.0 | 213.3333 | 1600 | 0.7124 | 0.9022 |
0.0 | 216.0 | 1620 | 0.7457 | 0.9022 |
0.0 | 218.6667 | 1640 | 0.7498 | 0.9022 |
0.0 | 221.3333 | 1660 | 0.7505 | 0.9022 |
0.0 | 224.0 | 1680 | 0.7512 | 0.9022 |
0.0 | 226.6667 | 1700 | 0.7660 | 0.9022 |
0.0 | 229.3333 | 1720 | 0.7682 | 0.9022 |
0.0 | 232.0 | 1740 | 0.7682 | 0.9022 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1