ktp-kk-crop

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0312
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8696 5 0.5871 0.7
No log 1.9130 11 0.0729 0.9667
0.7676 2.9565 17 0.1986 0.9
0.7676 4.0 23 0.1610 0.9
0.7676 4.8696 28 0.0644 0.9667
0.2441 5.9130 34 0.2016 0.9
0.2441 6.9565 40 0.1530 0.9
0.1751 8.0 46 0.0412 1.0
0.1751 8.8696 51 0.0301 1.0
0.1751 9.9130 57 0.0495 0.9667
0.1156 10.9565 63 0.0283 1.0
0.1156 12.0 69 0.0214 1.0
0.1156 12.8696 74 0.1014 0.9667
0.1238 13.9130 80 0.0538 1.0
0.1238 14.9565 86 0.0477 1.0
0.1064 16.0 92 0.0105 1.0
0.1064 16.8696 97 0.0389 0.9667
0.1064 17.9130 103 0.0120 1.0
0.0862 18.9565 109 0.0183 1.0
0.0862 20.0 115 0.0259 1.0
0.0345 20.8696 120 0.0272 1.0
0.0345 21.7391 125 0.0312 1.0

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
33
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for habibi26/ktp-kk-crop

Finetuned
(55)
this model

Evaluation results