Model Card for Model ID
Code to create model
import torch
from transformers import GroundingDinoConfig, GroundingDinoForObjectDetection, AutoProcessor
model_id = 'IDEA-Research/grounding-dino-tiny'
config = GroundingDinoConfig.from_pretrained(
model_id,
decoder_layers=1,
decoder_attention_heads=2,
encoder_layers=1,
encoder_attention_heads=2,
text_config=dict(
num_attention_heads=2,
num_hidden_layers=1,
hidden_size=32,
),
backbone_config=dict(
attention_probs_dropout_prob=0.0,
depths=[1, 1, 2, 1],
drop_path_rate=0.1,
embed_dim=12,
encoder_stride=32,
hidden_act="gelu",
hidden_dropout_prob=0.0,
hidden_size=48,
image_size=224,
initializer_range=0.02,
layer_norm_eps=1e-05,
mlp_ratio=4.0,
num_channels=3,
num_heads=[1, 2, 3, 4],
num_layers=4,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
patch_size=4,
stage_names=["stem", "stage1", "stage2", "stage3", "stage4"],
window_size=7
)
)
# Create model and randomize all weights
model = GroundingDinoForObjectDetection(config)
torch.manual_seed(0) # Set for reproducibility
for name, param in model.named_parameters():
param.data = torch.randn_like(param)
processor = AutoProcessor.from_pretrained(model_id)
print(model.num_parameters()) # 7751525
Code to export to ONNX
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from transformers.models.grounding_dino.modeling_grounding_dino import (
GroundingDinoObjectDetectionOutput,
)
# torch.onnx.errors.UnsupportedOperatorError: Exporting the operator 'aten::__ior_' to ONNX opset version 16 is not supported.
# Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues.
torch.Tensor.__ior__ = lambda self, other: self.__or__(other)
# model_id = "IDEA-Research/grounding-dino-tiny"
model_id = "hf-internal-testing/tiny-random-GroundingDinoForObjectDetection"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id)
old_forward = model.forward
def new_forward(*args, **kwargs):
output = old_forward(*args, **kwargs, return_dict=True)
# Only return the logits and pred_boxes
return GroundingDinoObjectDetectionOutput(
logits=output.logits, pred_boxes=output.pred_boxes
)
model.forward = new_forward
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).resize((800, 800))
text = "a cat." # NB: text query need to be lowercased + end with a dot
# Run python model
inputs = processor(images=image, text=text, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.4,
text_threshold=0.3,
target_sizes=[image.size[::-1]],
)
text_axes = {
"input_ids": {1: "sequence_length"},
"token_type_ids": {1: "sequence_length"},
"attention_mask": {1: "sequence_length"},
}
image_axes = {}
output_axes = {
"logits": {1: "num_queries"},
"pred_boxes": {1: "num_queries"},
}
input_names = [
"pixel_values",
"input_ids",
"token_type_ids",
"attention_mask",
"pixel_mask",
]
# Input to the model
x = tuple(inputs[key] for key in input_names)
# Export the model
torch.onnx.export(
model, # model being run
x, # model input (or a tuple for multiple inputs)
"model.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=16, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=input_names,
output_names=list(output_axes.keys()),
dynamic_axes={
**text_axes,
**image_axes,
**output_axes,
},
)
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
- Downloads last month
- 1