Model Card for Model ID

Code to create model

import torch
from transformers import GroundingDinoConfig, GroundingDinoForObjectDetection, AutoProcessor

model_id = 'IDEA-Research/grounding-dino-tiny'
config = GroundingDinoConfig.from_pretrained(
    model_id,
    decoder_layers=1,
    decoder_attention_heads=2,
    encoder_layers=1,
    encoder_attention_heads=2,
    text_config=dict(
        num_attention_heads=2,
        num_hidden_layers=1,
        hidden_size=32,
    ),
    backbone_config=dict(
        attention_probs_dropout_prob=0.0,
        depths=[1, 1, 2, 1],
        drop_path_rate=0.1,
        embed_dim=12,
        encoder_stride=32,
        hidden_act="gelu",
        hidden_dropout_prob=0.0,
        hidden_size=48,
        image_size=224,
        initializer_range=0.02,
        layer_norm_eps=1e-05,
        mlp_ratio=4.0,
        num_channels=3,
        num_heads=[1, 2, 3, 4],
        num_layers=4,
        out_features=["stage2", "stage3", "stage4"],
        out_indices=[2, 3, 4],
        patch_size=4,
        stage_names=["stem", "stage1", "stage2", "stage3", "stage4"],
        window_size=7
    )
)

# Create model and randomize all weights
model = GroundingDinoForObjectDetection(config)

torch.manual_seed(0) # Set for reproducibility
for name, param in model.named_parameters():
    param.data = torch.randn_like(param)

processor = AutoProcessor.from_pretrained(model_id)

print(model.num_parameters())  # 7751525

Code to export to ONNX

import requests

import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from transformers.models.grounding_dino.modeling_grounding_dino import (
    GroundingDinoObjectDetectionOutput,
)

# torch.onnx.errors.UnsupportedOperatorError: Exporting the operator 'aten::__ior_' to ONNX opset version 16 is not supported.
# Please feel free to request support or submit a pull request on PyTorch GitHub: https://github.com/pytorch/pytorch/issues.
torch.Tensor.__ior__ = lambda self, other: self.__or__(other)

# model_id = "IDEA-Research/grounding-dino-tiny"
model_id = "hf-internal-testing/tiny-random-GroundingDinoForObjectDetection"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id)

old_forward = model.forward
def new_forward(*args, **kwargs):
    output = old_forward(*args, **kwargs, return_dict=True)
    # Only return the logits and pred_boxes
    return GroundingDinoObjectDetectionOutput(
        logits=output.logits, pred_boxes=output.pred_boxes
    )
model.forward = new_forward

image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).resize((800, 800))
text = "a cat."  # NB: text query need to be lowercased + end with a dot

# Run python model
inputs = processor(images=image, text=text, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
    outputs,
    inputs.input_ids,
    box_threshold=0.4,
    text_threshold=0.3,
    target_sizes=[image.size[::-1]],
)

text_axes = {
    "input_ids": {1: "sequence_length"},
    "token_type_ids": {1: "sequence_length"},
    "attention_mask": {1: "sequence_length"},
}
image_axes = {}
output_axes = {
    "logits": {1: "num_queries"},
    "pred_boxes": {1: "num_queries"},
}
input_names = [
    "pixel_values",
    "input_ids",
    "token_type_ids",
    "attention_mask",
    "pixel_mask",
]

# Input to the model
x = tuple(inputs[key] for key in input_names)

# Export the model
torch.onnx.export(
    model,  # model being run
    x,  # model input (or a tuple for multiple inputs)
    "model.onnx",  # where to save the model (can be a file or file-like object)
    export_params=True,  # store the trained parameter weights inside the model file
    opset_version=16,  # the ONNX version to export the model to
    do_constant_folding=True,  # whether to execute constant folding for optimization
    input_names=input_names,
    output_names=list(output_axes.keys()),
    dynamic_axes={
        **text_axes,
        **image_axes,
        **output_axes,
    },
)

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
1
Safetensors
Model size
7.76M params
Tensor type
I64
·
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.