hkivancoral's picture
End of training
63ee42d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_tiny_rms_lr00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7619047619047619

hushem_1x_deit_tiny_rms_lr00001_fold4

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6971
  • Accuracy: 0.7619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.1869 0.4762
1.3589 2.0 12 1.4321 0.2381
1.3589 3.0 18 0.8086 0.7143
0.7587 4.0 24 0.7860 0.6667
0.3552 5.0 30 0.6443 0.7143
0.3552 6.0 36 0.6345 0.7381
0.1624 7.0 42 0.6029 0.7381
0.1624 8.0 48 0.6145 0.6667
0.0655 9.0 54 0.6448 0.6905
0.0257 10.0 60 0.6084 0.7381
0.0257 11.0 66 0.5594 0.7143
0.0099 12.0 72 0.6088 0.7381
0.0099 13.0 78 0.6402 0.7619
0.0054 14.0 84 0.6319 0.7381
0.0038 15.0 90 0.6323 0.7619
0.0038 16.0 96 0.6432 0.7381
0.0029 17.0 102 0.6446 0.7381
0.0029 18.0 108 0.6470 0.7381
0.0023 19.0 114 0.6562 0.7381
0.002 20.0 120 0.6656 0.7381
0.002 21.0 126 0.6696 0.7381
0.0017 22.0 132 0.6739 0.7381
0.0017 23.0 138 0.6722 0.7619
0.0015 24.0 144 0.6705 0.7619
0.0014 25.0 150 0.6761 0.7619
0.0014 26.0 156 0.6768 0.7619
0.0012 27.0 162 0.6844 0.7619
0.0012 28.0 168 0.6843 0.7619
0.0012 29.0 174 0.6854 0.7619
0.0011 30.0 180 0.6913 0.7619
0.0011 31.0 186 0.6928 0.7619
0.001 32.0 192 0.6912 0.7619
0.001 33.0 198 0.6912 0.7619
0.001 34.0 204 0.6924 0.7619
0.0009 35.0 210 0.6912 0.7619
0.0009 36.0 216 0.6935 0.7619
0.0009 37.0 222 0.6948 0.7619
0.0009 38.0 228 0.6957 0.7619
0.0009 39.0 234 0.6966 0.7619
0.0009 40.0 240 0.6969 0.7619
0.0009 41.0 246 0.6971 0.7619
0.0009 42.0 252 0.6971 0.7619
0.0009 43.0 258 0.6971 0.7619
0.0008 44.0 264 0.6971 0.7619
0.0009 45.0 270 0.6971 0.7619
0.0009 46.0 276 0.6971 0.7619
0.0008 47.0 282 0.6971 0.7619
0.0008 48.0 288 0.6971 0.7619
0.0009 49.0 294 0.6971 0.7619
0.0009 50.0 300 0.6971 0.7619

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1