metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_tiny_rms_lr0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5609756097560976
hushem_1x_deit_tiny_rms_lr0001_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.1537
- Accuracy: 0.5610
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.5741 | 0.2683 |
1.8922 | 2.0 | 12 | 1.3978 | 0.2683 |
1.8922 | 3.0 | 18 | 1.4032 | 0.2439 |
1.5101 | 4.0 | 24 | 1.4021 | 0.2683 |
1.38 | 5.0 | 30 | 2.1528 | 0.2439 |
1.38 | 6.0 | 36 | 1.4141 | 0.2439 |
1.4096 | 7.0 | 42 | 1.2484 | 0.4390 |
1.4096 | 8.0 | 48 | 1.2607 | 0.4390 |
1.2381 | 9.0 | 54 | 0.9950 | 0.5366 |
1.1539 | 10.0 | 60 | 1.0350 | 0.5610 |
1.1539 | 11.0 | 66 | 1.2716 | 0.3415 |
0.9039 | 12.0 | 72 | 1.0596 | 0.5854 |
0.9039 | 13.0 | 78 | 1.5972 | 0.4146 |
0.6191 | 14.0 | 84 | 1.9855 | 0.4390 |
0.4358 | 15.0 | 90 | 1.2403 | 0.4878 |
0.4358 | 16.0 | 96 | 2.3374 | 0.4390 |
0.2291 | 17.0 | 102 | 1.5475 | 0.4390 |
0.2291 | 18.0 | 108 | 1.2789 | 0.6341 |
0.1203 | 19.0 | 114 | 1.8441 | 0.4390 |
0.0604 | 20.0 | 120 | 1.7948 | 0.4878 |
0.0604 | 21.0 | 126 | 2.0211 | 0.4634 |
0.0322 | 22.0 | 132 | 1.8178 | 0.5366 |
0.0322 | 23.0 | 138 | 2.0950 | 0.4878 |
0.017 | 24.0 | 144 | 2.0410 | 0.5122 |
0.0011 | 25.0 | 150 | 2.0405 | 0.5122 |
0.0011 | 26.0 | 156 | 2.0495 | 0.5122 |
0.0007 | 27.0 | 162 | 2.0594 | 0.5122 |
0.0007 | 28.0 | 168 | 2.0747 | 0.5122 |
0.0006 | 29.0 | 174 | 2.0825 | 0.5610 |
0.0005 | 30.0 | 180 | 2.0915 | 0.5610 |
0.0005 | 31.0 | 186 | 2.1017 | 0.5610 |
0.0004 | 32.0 | 192 | 2.1110 | 0.5610 |
0.0004 | 33.0 | 198 | 2.1199 | 0.5610 |
0.0004 | 34.0 | 204 | 2.1276 | 0.5610 |
0.0004 | 35.0 | 210 | 2.1335 | 0.5610 |
0.0004 | 36.0 | 216 | 2.1398 | 0.5610 |
0.0004 | 37.0 | 222 | 2.1439 | 0.5610 |
0.0004 | 38.0 | 228 | 2.1473 | 0.5610 |
0.0003 | 39.0 | 234 | 2.1497 | 0.5610 |
0.0003 | 40.0 | 240 | 2.1519 | 0.5610 |
0.0003 | 41.0 | 246 | 2.1532 | 0.5610 |
0.0003 | 42.0 | 252 | 2.1537 | 0.5610 |
0.0003 | 43.0 | 258 | 2.1537 | 0.5610 |
0.0003 | 44.0 | 264 | 2.1537 | 0.5610 |
0.0003 | 45.0 | 270 | 2.1537 | 0.5610 |
0.0003 | 46.0 | 276 | 2.1537 | 0.5610 |
0.0003 | 47.0 | 282 | 2.1537 | 0.5610 |
0.0003 | 48.0 | 288 | 2.1537 | 0.5610 |
0.0003 | 49.0 | 294 | 2.1537 | 0.5610 |
0.0003 | 50.0 | 300 | 2.1537 | 0.5610 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1