metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_base_adamax_00001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8780487804878049
hushem_5x_deit_base_adamax_00001_fold5
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5126
- Accuracy: 0.8780
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2842 | 1.0 | 28 | 1.2327 | 0.4634 |
1.0428 | 2.0 | 56 | 1.0859 | 0.5854 |
0.7338 | 3.0 | 84 | 0.9001 | 0.6585 |
0.526 | 4.0 | 112 | 0.7803 | 0.6829 |
0.3644 | 5.0 | 140 | 0.6952 | 0.6829 |
0.2797 | 6.0 | 168 | 0.5854 | 0.7073 |
0.1574 | 7.0 | 196 | 0.5546 | 0.7561 |
0.1102 | 8.0 | 224 | 0.5073 | 0.7805 |
0.0668 | 9.0 | 252 | 0.4703 | 0.8049 |
0.0352 | 10.0 | 280 | 0.4612 | 0.8293 |
0.0202 | 11.0 | 308 | 0.4468 | 0.8537 |
0.0126 | 12.0 | 336 | 0.4508 | 0.8537 |
0.0083 | 13.0 | 364 | 0.4495 | 0.8537 |
0.0078 | 14.0 | 392 | 0.4584 | 0.8780 |
0.0058 | 15.0 | 420 | 0.4565 | 0.8537 |
0.0051 | 16.0 | 448 | 0.4617 | 0.8780 |
0.0041 | 17.0 | 476 | 0.4620 | 0.8537 |
0.0038 | 18.0 | 504 | 0.4684 | 0.8780 |
0.0035 | 19.0 | 532 | 0.4714 | 0.8780 |
0.0033 | 20.0 | 560 | 0.4764 | 0.8780 |
0.0027 | 21.0 | 588 | 0.4824 | 0.8780 |
0.0027 | 22.0 | 616 | 0.4828 | 0.8780 |
0.0023 | 23.0 | 644 | 0.4858 | 0.8780 |
0.0021 | 24.0 | 672 | 0.4874 | 0.8780 |
0.002 | 25.0 | 700 | 0.4903 | 0.8780 |
0.002 | 26.0 | 728 | 0.4912 | 0.8780 |
0.0019 | 27.0 | 756 | 0.4926 | 0.8780 |
0.0017 | 28.0 | 784 | 0.4940 | 0.8780 |
0.0016 | 29.0 | 812 | 0.4962 | 0.8780 |
0.0016 | 30.0 | 840 | 0.4964 | 0.8780 |
0.0015 | 31.0 | 868 | 0.4991 | 0.8780 |
0.0015 | 32.0 | 896 | 0.5002 | 0.8780 |
0.0013 | 33.0 | 924 | 0.5024 | 0.8780 |
0.0014 | 34.0 | 952 | 0.5035 | 0.8780 |
0.0013 | 35.0 | 980 | 0.5045 | 0.8780 |
0.0013 | 36.0 | 1008 | 0.5049 | 0.8780 |
0.0012 | 37.0 | 1036 | 0.5067 | 0.8780 |
0.0012 | 38.0 | 1064 | 0.5085 | 0.8780 |
0.0012 | 39.0 | 1092 | 0.5083 | 0.8780 |
0.0011 | 40.0 | 1120 | 0.5095 | 0.8780 |
0.0011 | 41.0 | 1148 | 0.5101 | 0.8780 |
0.0011 | 42.0 | 1176 | 0.5103 | 0.8780 |
0.0011 | 43.0 | 1204 | 0.5116 | 0.8780 |
0.0011 | 44.0 | 1232 | 0.5122 | 0.8780 |
0.0011 | 45.0 | 1260 | 0.5120 | 0.8780 |
0.0011 | 46.0 | 1288 | 0.5123 | 0.8780 |
0.001 | 47.0 | 1316 | 0.5124 | 0.8780 |
0.0011 | 48.0 | 1344 | 0.5126 | 0.8780 |
0.001 | 49.0 | 1372 | 0.5126 | 0.8780 |
0.0011 | 50.0 | 1400 | 0.5126 | 0.8780 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0