hkivancoral's picture
End of training
da3dc8c
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_adamax_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8780487804878049

hushem_5x_deit_base_adamax_00001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5126
  • Accuracy: 0.8780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2842 1.0 28 1.2327 0.4634
1.0428 2.0 56 1.0859 0.5854
0.7338 3.0 84 0.9001 0.6585
0.526 4.0 112 0.7803 0.6829
0.3644 5.0 140 0.6952 0.6829
0.2797 6.0 168 0.5854 0.7073
0.1574 7.0 196 0.5546 0.7561
0.1102 8.0 224 0.5073 0.7805
0.0668 9.0 252 0.4703 0.8049
0.0352 10.0 280 0.4612 0.8293
0.0202 11.0 308 0.4468 0.8537
0.0126 12.0 336 0.4508 0.8537
0.0083 13.0 364 0.4495 0.8537
0.0078 14.0 392 0.4584 0.8780
0.0058 15.0 420 0.4565 0.8537
0.0051 16.0 448 0.4617 0.8780
0.0041 17.0 476 0.4620 0.8537
0.0038 18.0 504 0.4684 0.8780
0.0035 19.0 532 0.4714 0.8780
0.0033 20.0 560 0.4764 0.8780
0.0027 21.0 588 0.4824 0.8780
0.0027 22.0 616 0.4828 0.8780
0.0023 23.0 644 0.4858 0.8780
0.0021 24.0 672 0.4874 0.8780
0.002 25.0 700 0.4903 0.8780
0.002 26.0 728 0.4912 0.8780
0.0019 27.0 756 0.4926 0.8780
0.0017 28.0 784 0.4940 0.8780
0.0016 29.0 812 0.4962 0.8780
0.0016 30.0 840 0.4964 0.8780
0.0015 31.0 868 0.4991 0.8780
0.0015 32.0 896 0.5002 0.8780
0.0013 33.0 924 0.5024 0.8780
0.0014 34.0 952 0.5035 0.8780
0.0013 35.0 980 0.5045 0.8780
0.0013 36.0 1008 0.5049 0.8780
0.0012 37.0 1036 0.5067 0.8780
0.0012 38.0 1064 0.5085 0.8780
0.0012 39.0 1092 0.5083 0.8780
0.0011 40.0 1120 0.5095 0.8780
0.0011 41.0 1148 0.5101 0.8780
0.0011 42.0 1176 0.5103 0.8780
0.0011 43.0 1204 0.5116 0.8780
0.0011 44.0 1232 0.5122 0.8780
0.0011 45.0 1260 0.5120 0.8780
0.0011 46.0 1288 0.5123 0.8780
0.001 47.0 1316 0.5124 0.8780
0.0011 48.0 1344 0.5126 0.8780
0.001 49.0 1372 0.5126 0.8780
0.0011 50.0 1400 0.5126 0.8780

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0