huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int4
This is a GPTQ-quantized 4-bit version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned.
This is just the quantification test for GPTQ, with only one dataset: "gptqmodel is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm.".
Although it was just a simple fine-tuning and quantization, it solved this discussion.
If you need to fine-tune your data and quantify it, please contact us: [email protected]
Use with transformers
Starting with transformers >= 4.43.0
onward, you can run conversational inference using the Transformers pipeline
abstraction or by leveraging the Auto classes with the generate()
function.
Make sure to update your transformers installation via pip install --upgrade transformers
.
See the snippet below for usage with Transformers:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int4"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clear":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
# Build the chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input and prepare it for the model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate a response from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=8192
pad_token_id=tokenizer.pad_token_id
)
# Extract model output, removing special tokens
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Response: {response}")
- Downloads last month
- 322
Model tree for huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned-GPTQ-Int4
Base model
meta-llama/Llama-3.1-70B