bbc-ner-deberta-large_baseline2_dims
This model is a fine-tuned version of microsoft/deberta-v3-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1481
- Cargo Dimension Precision: 0.7606
- Cargo Dimension Recall: 0.9474
- Cargo Dimension F1: 0.8437
- Cargo Dimension Number: 114
- Cargo Quantity Precision: 0.8079
- Cargo Quantity Recall: 0.8937
- Cargo Quantity F1: 0.8486
- Cargo Quantity Number: 207
- Cargo Requirements Precision: 0.4962
- Cargo Requirements Recall: 0.6535
- Cargo Requirements F1: 0.5641
- Cargo Requirements Number: 202
- Cargo Stowage Factor Precision: 0.8226
- Cargo Stowage Factor Recall: 0.8361
- Cargo Stowage Factor F1: 0.8293
- Cargo Stowage Factor Number: 122
- Cargo Type Precision: 0.7885
- Cargo Type Recall: 0.8183
- Cargo Type F1: 0.8031
- Cargo Type Number: 688
- Cargo Weigh Volume Precision: 0.8528
- Cargo Weigh Volume Recall: 0.9026
- Cargo Weigh Volume F1: 0.8770
- Cargo Weigh Volume Number: 719
- Commission Rate Precision: 0.7955
- Commission Rate Recall: 0.8452
- Commission Rate F1: 0.8196
- Commission Rate Number: 336
- Discharging Port Precision: 0.8706
- Discharging Port Recall: 0.9015
- Discharging Port F1: 0.8858
- Discharging Port Number: 843
- Laycan Date Precision: 0.8260
- Laycan Date Recall: 0.8710
- Laycan Date F1: 0.8479
- Laycan Date Number: 496
- Loading Discharging Terms Precision: 0.7211
- Loading Discharging Terms Recall: 0.7975
- Loading Discharging Terms F1: 0.7574
- Loading Discharging Terms Number: 321
- Loading Port Precision: 0.8906
- Loading Port Recall: 0.9232
- Loading Port F1: 0.9066
- Loading Port Number: 899
- Shipment Terms Precision: 0.6780
- Shipment Terms Recall: 0.6780
- Shipment Terms F1: 0.6780
- Shipment Terms Number: 118
- Vessel Requirements Precision: 0.3786
- Vessel Requirements Recall: 0.5132
- Vessel Requirements F1: 0.4358
- Vessel Requirements Number: 76
- Overall Precision: 0.8041
- Overall Recall: 0.8598
- Overall F1: 0.8310
- Overall Accuracy: 0.9688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Cargo Dimension Precision | Cargo Dimension Recall | Cargo Dimension F1 | Cargo Dimension Number | Cargo Quantity Precision | Cargo Quantity Recall | Cargo Quantity F1 | Cargo Quantity Number | Cargo Requirements Precision | Cargo Requirements Recall | Cargo Requirements F1 | Cargo Requirements Number | Cargo Stowage Factor Precision | Cargo Stowage Factor Recall | Cargo Stowage Factor F1 | Cargo Stowage Factor Number | Cargo Type Precision | Cargo Type Recall | Cargo Type F1 | Cargo Type Number | Cargo Weigh Volume Precision | Cargo Weigh Volume Recall | Cargo Weigh Volume F1 | Cargo Weigh Volume Number | Commission Rate Precision | Commission Rate Recall | Commission Rate F1 | Commission Rate Number | Discharging Port Precision | Discharging Port Recall | Discharging Port F1 | Discharging Port Number | Laycan Date Precision | Laycan Date Recall | Laycan Date F1 | Laycan Date Number | Loading Discharging Terms Precision | Loading Discharging Terms Recall | Loading Discharging Terms F1 | Loading Discharging Terms Number | Loading Port Precision | Loading Port Recall | Loading Port F1 | Loading Port Number | Shipment Terms Precision | Shipment Terms Recall | Shipment Terms F1 | Shipment Terms Number | Vessel Requirements Precision | Vessel Requirements Recall | Vessel Requirements F1 | Vessel Requirements Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.4476 | 1.0 | 119 | 0.1523 | 0.6169 | 0.8333 | 0.7090 | 114 | 0.7087 | 0.8696 | 0.7809 | 207 | 0.3007 | 0.4257 | 0.3525 | 202 | 0.6284 | 0.7623 | 0.6889 | 122 | 0.6478 | 0.6308 | 0.6392 | 688 | 0.6983 | 0.8178 | 0.7534 | 719 | 0.7099 | 0.7649 | 0.7364 | 336 | 0.7212 | 0.8683 | 0.7879 | 843 | 0.7482 | 0.8266 | 0.7854 | 496 | 0.5669 | 0.6729 | 0.6154 | 321 | 0.8280 | 0.8565 | 0.8420 | 899 | 0.6556 | 0.5 | 0.5673 | 118 | 0.0658 | 0.0658 | 0.0658 | 76 | 0.6819 | 0.7635 | 0.7204 | 0.9581 |
0.132 | 2.0 | 239 | 0.1438 | 0.6471 | 0.8684 | 0.7416 | 114 | 0.7212 | 0.9372 | 0.8151 | 207 | 0.2857 | 0.4455 | 0.3482 | 202 | 0.7083 | 0.8361 | 0.7669 | 122 | 0.6586 | 0.8270 | 0.7332 | 688 | 0.7191 | 0.8901 | 0.7955 | 719 | 0.7863 | 0.8542 | 0.8188 | 336 | 0.7639 | 0.8944 | 0.8240 | 843 | 0.7370 | 0.8589 | 0.7933 | 496 | 0.5497 | 0.7757 | 0.6434 | 321 | 0.8533 | 0.8932 | 0.8728 | 899 | 0.5669 | 0.6102 | 0.5878 | 118 | 0.216 | 0.3553 | 0.2687 | 76 | 0.6943 | 0.8387 | 0.7597 | 0.9579 |
0.1022 | 3.0 | 358 | 0.1217 | 0.7574 | 0.9035 | 0.8240 | 114 | 0.8087 | 0.8986 | 0.8513 | 207 | 0.4081 | 0.5495 | 0.4684 | 202 | 0.75 | 0.8361 | 0.7907 | 122 | 0.7301 | 0.8140 | 0.7698 | 688 | 0.8132 | 0.8720 | 0.8416 | 719 | 0.7983 | 0.8482 | 0.8225 | 336 | 0.8123 | 0.9087 | 0.8578 | 843 | 0.7901 | 0.8730 | 0.8295 | 496 | 0.7583 | 0.7819 | 0.7699 | 321 | 0.8783 | 0.9232 | 0.9002 | 899 | 0.7596 | 0.6695 | 0.7117 | 118 | 0.3529 | 0.4737 | 0.4045 | 76 | 0.7744 | 0.8498 | 0.8103 | 0.9677 |
0.0802 | 4.0 | 478 | 0.1291 | 0.7589 | 0.9386 | 0.8392 | 114 | 0.8097 | 0.8841 | 0.8453 | 207 | 0.4566 | 0.5990 | 0.5182 | 202 | 0.8347 | 0.8279 | 0.8313 | 122 | 0.7710 | 0.7733 | 0.7721 | 688 | 0.8015 | 0.8818 | 0.8397 | 719 | 0.8203 | 0.8423 | 0.8311 | 336 | 0.8449 | 0.9110 | 0.8767 | 843 | 0.8252 | 0.8851 | 0.8541 | 496 | 0.7202 | 0.7539 | 0.7367 | 321 | 0.8637 | 0.9232 | 0.8925 | 899 | 0.7404 | 0.6525 | 0.6937 | 118 | 0.4359 | 0.4474 | 0.4416 | 76 | 0.7912 | 0.8463 | 0.8179 | 0.9683 |
0.0733 | 5.0 | 597 | 0.1269 | 0.7347 | 0.9474 | 0.8276 | 114 | 0.7975 | 0.9130 | 0.8514 | 207 | 0.4306 | 0.6139 | 0.5061 | 202 | 0.8062 | 0.8525 | 0.8287 | 122 | 0.7564 | 0.8169 | 0.7855 | 688 | 0.8142 | 0.8901 | 0.8505 | 719 | 0.8184 | 0.8452 | 0.8316 | 336 | 0.8760 | 0.9051 | 0.8903 | 843 | 0.8180 | 0.8790 | 0.8474 | 496 | 0.7303 | 0.8100 | 0.7681 | 321 | 0.8747 | 0.9321 | 0.9025 | 899 | 0.6231 | 0.6864 | 0.6532 | 118 | 0.3407 | 0.4079 | 0.3713 | 76 | 0.7870 | 0.8598 | 0.8218 | 0.9681 |
0.0541 | 6.0 | 717 | 0.1299 | 0.7379 | 0.9386 | 0.8263 | 114 | 0.7899 | 0.9082 | 0.8449 | 207 | 0.4330 | 0.6238 | 0.5112 | 202 | 0.8095 | 0.8361 | 0.8226 | 122 | 0.7681 | 0.8183 | 0.7924 | 688 | 0.7916 | 0.8929 | 0.8392 | 719 | 0.8182 | 0.8571 | 0.8372 | 336 | 0.8491 | 0.9075 | 0.8773 | 843 | 0.8056 | 0.8690 | 0.8361 | 496 | 0.6981 | 0.7850 | 0.7390 | 321 | 0.8828 | 0.9388 | 0.9100 | 899 | 0.6991 | 0.6695 | 0.6840 | 118 | 0.38 | 0.5 | 0.4318 | 76 | 0.7815 | 0.8607 | 0.8192 | 0.9676 |
0.0463 | 7.0 | 836 | 0.1311 | 0.7626 | 0.9298 | 0.8379 | 114 | 0.8243 | 0.8841 | 0.8531 | 207 | 0.4731 | 0.6089 | 0.5325 | 202 | 0.7895 | 0.8607 | 0.8235 | 122 | 0.7875 | 0.7863 | 0.7869 | 688 | 0.8366 | 0.8901 | 0.8625 | 719 | 0.8067 | 0.8571 | 0.8312 | 336 | 0.8928 | 0.8992 | 0.8960 | 843 | 0.8314 | 0.8649 | 0.8478 | 496 | 0.7672 | 0.8006 | 0.7835 | 321 | 0.9013 | 0.9143 | 0.9078 | 899 | 0.6529 | 0.6695 | 0.6611 | 118 | 0.3608 | 0.4605 | 0.4046 | 76 | 0.8096 | 0.8493 | 0.8289 | 0.9686 |
0.0434 | 8.0 | 956 | 0.1430 | 0.7448 | 0.9474 | 0.8340 | 114 | 0.7957 | 0.9034 | 0.8462 | 207 | 0.4765 | 0.6535 | 0.5511 | 202 | 0.7863 | 0.8443 | 0.8142 | 122 | 0.7916 | 0.8227 | 0.8068 | 688 | 0.8274 | 0.8999 | 0.8621 | 719 | 0.8141 | 0.8601 | 0.8365 | 336 | 0.8727 | 0.9027 | 0.8875 | 843 | 0.8241 | 0.8690 | 0.8459 | 496 | 0.7298 | 0.8162 | 0.7706 | 321 | 0.8943 | 0.9132 | 0.9037 | 899 | 0.5797 | 0.6780 | 0.6250 | 118 | 0.3491 | 0.4868 | 0.4066 | 76 | 0.7963 | 0.8605 | 0.8271 | 0.9681 |
0.0373 | 9.0 | 1075 | 0.1435 | 0.75 | 0.9474 | 0.8372 | 114 | 0.8017 | 0.8986 | 0.8474 | 207 | 0.4815 | 0.6436 | 0.5508 | 202 | 0.8254 | 0.8525 | 0.8387 | 122 | 0.7762 | 0.8169 | 0.7960 | 688 | 0.8409 | 0.9040 | 0.8713 | 719 | 0.8011 | 0.8512 | 0.8254 | 336 | 0.8648 | 0.8956 | 0.8800 | 843 | 0.8267 | 0.875 | 0.8501 | 496 | 0.7227 | 0.8037 | 0.7611 | 321 | 0.8874 | 0.9288 | 0.9076 | 899 | 0.6349 | 0.6780 | 0.6557 | 118 | 0.3645 | 0.5132 | 0.4262 | 76 | 0.7969 | 0.8611 | 0.8278 | 0.9686 |
0.0348 | 9.96 | 1190 | 0.1481 | 0.7606 | 0.9474 | 0.8437 | 114 | 0.8079 | 0.8937 | 0.8486 | 207 | 0.4962 | 0.6535 | 0.5641 | 202 | 0.8226 | 0.8361 | 0.8293 | 122 | 0.7885 | 0.8183 | 0.8031 | 688 | 0.8528 | 0.9026 | 0.8770 | 719 | 0.7955 | 0.8452 | 0.8196 | 336 | 0.8706 | 0.9015 | 0.8858 | 843 | 0.8260 | 0.8710 | 0.8479 | 496 | 0.7211 | 0.7975 | 0.7574 | 321 | 0.8906 | 0.9232 | 0.9066 | 899 | 0.6780 | 0.6780 | 0.6780 | 118 | 0.3786 | 0.5132 | 0.4358 | 76 | 0.8041 | 0.8598 | 0.8310 | 0.9688 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.15.0
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for huyhuyvu01/DeBERTa_large_NER_chartering_email
Base model
microsoft/deberta-v3-large