BabyHydra-dare

🧩 Configuration


models:
  - model: OpenPipe/mistral-ft-optimized-1218
    # No parameters necessary for base model
  - model: WizardLMTeam/WizardMath-7B-V1.1
    parameters:
      density: 0.53
      weight: 0.4
  - model: abacusai/Slerp-CM-mist-dpo
    parameters:
      density: 0.53
      weight: 0.3
merge_method: dare_ties
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
  int8_mask: true
  normalize: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jS84/BabyHydra-dare"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Thanks to MergeKit and Lazymergekit for the inspiration!

Downloads last month
31
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jS84/BabyHydra-dare