Daredevil-8B-GPTQ / README.md
jcorenday's picture
Upload folder using huggingface_hub
f32db2f verified
metadata
base_model:
  - nbeerbower/llama-3-stella-8B
  - Hastagaras/llama-3-8b-okay
  - nbeerbower/llama-3-gutenberg-8B
  - openchat/openchat-3.6-8b-20240522
  - Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
  - cstr/llama3-8b-spaetzle-v20
  - mlabonne/ChimeraLlama-3-8B-v3
  - flammenai/Mahou-1.1-llama3-8B
  - KingNish/KingNish-Llama3-8b
license: other
tags:
  - merge
  - mergekit
  - lazymergekit
  - autoquant
  - gptq
model-index:
  - name: Daredevil-8B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 68.86
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 84.5
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 59.89
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 73.54
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B
          name: Open LLM Leaderboard

Daredevil-8B

image/jpeg

Daredevil-8B is a mega-merge designed to maximize MMLU. On 27 May 24, it is the Llama 3 8B model with the highest MMLU score. From my experience, a high MMLU score is all you need with Llama 3 models.

It is a merge of the following models using LazyMergekit:

Thanks to nbeerbower, Hastagaras, openchat, Kukedlc, cstr, flammenai, and KingNish for their merges. Special thanks to Charles Goddard and Arcee.ai for MergeKit.

πŸ”Ž Applications

You can use it as an improved version of meta-llama/Meta-Llama-3-8B-Instruct.

This is a censored model. For an uncensored version, see mlabonne/Daredevil-8B-abliterated.

Tested on LM Studio using the "Llama 3" preset.

⚑ Quantization

πŸ† Evaluation

Open LLM Leaderboard

Daredevil-8B is the best-performing 8B model on the Open LLM Leaderboard in terms of MMLU score (27 May 24).

image/png

Nous

Daredevil-8B is the best-performing 8B model on Nous' benchmark suite (evaluation performed using LLM AutoEval, 27 May 24). See the entire leaderboard here.

Model Average AGIEval GPT4All TruthfulQA Bigbench
mlabonne/Daredevil-8B πŸ“„ 55.87 44.13 73.52 59.05 46.77
mlabonne/Daredevil-8B-abliterated πŸ“„ 55.06 43.29 73.33 57.47 46.17
mlabonne/Llama-3-8B-Instruct-abliterated-dpomix πŸ“„ 52.26 41.6 69.95 54.22 43.26
meta-llama/Meta-Llama-3-8B-Instruct πŸ“„ 51.34 41.22 69.86 51.65 42.64
failspy/Meta-Llama-3-8B-Instruct-abliterated-v3 πŸ“„ 51.21 40.23 69.5 52.44 42.69
mlabonne/OrpoLlama-3-8B πŸ“„ 48.63 34.17 70.59 52.39 37.36
meta-llama/Meta-Llama-3-8B πŸ“„ 45.42 31.1 69.95 43.91 36.7

🌳 Model family tree

image/png

🧩 Configuration

models:
  - model: NousResearch/Meta-Llama-3-8B
    # No parameters necessary for base model
  - model: nbeerbower/llama-3-stella-8B
    parameters:
      density: 0.6
      weight: 0.16
  - model: Hastagaras/llama-3-8b-okay
    parameters:
      density: 0.56
      weight: 0.1
  - model: nbeerbower/llama-3-gutenberg-8B
    parameters:
      density: 0.6
      weight: 0.18
  - model: openchat/openchat-3.6-8b-20240522
    parameters:
      density: 0.56
      weight: 0.12
  - model: Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
    parameters:
      density: 0.58
      weight: 0.18
  - model: cstr/llama3-8b-spaetzle-v20
    parameters:
      density: 0.56
      weight: 0.08
  - model: mlabonne/ChimeraLlama-3-8B-v3
    parameters:
      density: 0.56
      weight: 0.08
  - model: flammenai/Mahou-1.1-llama3-8B
    parameters:
      density: 0.55
      weight: 0.05
  - model: KingNish/KingNish-Llama3-8b
    parameters:
      density: 0.55
      weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])