pubmedbert-fulltext

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4548
  • Accuracy: 0.9498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 791 0.2502 0.9342
0.1717 2.0 1582 0.2889 0.9449
0.0792 3.0 2373 0.2844 0.9424
0.0565 4.0 3164 0.3055 0.9377
0.0565 5.0 3955 0.3059 0.9458
0.0405 6.0 4746 0.3693 0.9451
0.0274 7.0 5537 0.3295 0.9438
0.0263 8.0 6328 0.4278 0.9337
0.0181 9.0 7119 0.3807 0.9465
0.0181 10.0 7910 0.4318 0.9442
0.0173 11.0 8701 0.3995 0.9487
0.011 12.0 9492 0.4487 0.9466
0.0077 13.0 10283 0.4247 0.9482
0.0075 14.0 11074 0.5082 0.9433
0.0075 15.0 11865 0.4722 0.9458
0.0071 16.0 12656 0.4134 0.9507
0.0034 17.0 13447 0.4252 0.9496
0.0033 18.0 14238 0.4436 0.9500
0.0023 19.0 15029 0.4481 0.9505
0.0023 20.0 15820 0.4548 0.9498

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
30
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jialicheng/ddi-pubmedbert-fulltext

Collection including jialicheng/ddi-pubmedbert-fulltext