Wiederchat-7b

Wiederchat-7b is a merge of the following models using LazyMergekit:

Benchmark mt-bench-de

Even before dpo-alignment this model performs quite good:

{
    "first_turn": 7.46875,
    "second_turn": 6.7875,
    "categories": {
        "writing": 8.55,
        "roleplay": 8,
        "reasoning": 5.3,
        "math": 4.35,
        "coding": 4.6,
        "extraction": 8.4,
        "stem": 8.575,
        "humanities": 9.25
    },
    "average": 7.128125
}

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # no parameters necessary for base model
  - model: mlabonne/OmniTruthyBeagle-7B-v0
    parameters:
      density: 0.60
      weight: 0.30
  - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
    parameters:
      density: 0.65
      weight: 0.40
  - model: cognitivecomputations/openchat-3.5-0106-laser
    parameters:
      density: 0.6
      weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johannhartmann/Wiederchat-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
17
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for johannhartmann/Wiederchat-7b