Wiederchat-7b
Wiederchat-7b is a merge of the following models using LazyMergekit:
- mlabonne/OmniTruthyBeagle-7B-v0
- mayflowergmbh/Wiedervereinigung-7b-dpo-laser
- cognitivecomputations/openchat-3.5-0106-laser
Benchmark mt-bench-de
Even before dpo-alignment this model performs quite good:
{
"first_turn": 7.46875,
"second_turn": 6.7875,
"categories": {
"writing": 8.55,
"roleplay": 8,
"reasoning": 5.3,
"math": 4.35,
"coding": 4.6,
"extraction": 8.4,
"stem": 8.575,
"humanities": 9.25
},
"average": 7.128125
}
𧩠Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: mlabonne/OmniTruthyBeagle-7B-v0
parameters:
density: 0.60
weight: 0.30
- model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser
parameters:
density: 0.65
weight: 0.40
- model: cognitivecomputations/openchat-3.5-0106-laser
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johannhartmann/Wiederchat-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for johannhartmann/Wiederchat-7b
Merge model
this model