ModernRadBERT-cui-classifier
This model is a fine-tuned version of answerdotai/ModernBERT-base on the unsloth/Radiology_mini
dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1454
- Precision Micro: 0.8664
- Recall Micro: 0.7217
- F1: 0.7874
- Precision Macro: 0.6973
- Recall Macro: 0.4836
- F1 Macro: 0.5480
- Exact Match: 0.6580
- Hamming Loss: 0.0327
- Label Accuracy: 0.9673
https://www.johnpaulett.com/2025/modernbert-radiology-fine-tuning-classifier/
Model description
More information needed
Intended uses & limitations
Not intended for real-world use, was an example of MLM fine-tuning on a small radiology dataset.
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Micro | Recall Micro | F1 | Precision Macro | Recall Macro | F1 Macro | Exact Match | Hamming Loss | Label Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1371 | 1.0 | 205 | 0.1214 | 0.8169 | 0.6679 | 0.7350 | 0.4170 | 0.3481 | 0.3667 | 0.5681 | 0.0404 | 0.9596 |
0.0904 | 2.0 | 410 | 0.1054 | 0.8704 | 0.6833 | 0.7656 | 0.5391 | 0.3744 | 0.4106 | 0.6029 | 0.0351 | 0.9649 |
0.0458 | 3.0 | 615 | 0.1012 | 0.8316 | 0.7582 | 0.7932 | 0.5899 | 0.5157 | 0.5251 | 0.6580 | 0.0332 | 0.9668 |
0.0216 | 4.0 | 820 | 0.1134 | 0.8738 | 0.7044 | 0.7800 | 0.7129 | 0.4338 | 0.5071 | 0.6377 | 0.0333 | 0.9667 |
0.01 | 5.0 | 1025 | 0.1194 | 0.8382 | 0.7159 | 0.7723 | 0.6707 | 0.4817 | 0.5336 | 0.6290 | 0.0354 | 0.9646 |
0.0047 | 6.0 | 1230 | 0.1224 | 0.8721 | 0.7332 | 0.7967 | 0.6475 | 0.4692 | 0.5187 | 0.6638 | 0.0314 | 0.9686 |
0.0024 | 7.0 | 1435 | 0.1228 | 0.8540 | 0.7409 | 0.7934 | 0.7016 | 0.5071 | 0.5648 | 0.6725 | 0.0324 | 0.9676 |
0.0012 | 8.0 | 1640 | 0.1289 | 0.8744 | 0.7217 | 0.7907 | 0.7053 | 0.4852 | 0.5531 | 0.6609 | 0.0320 | 0.9680 |
0.0009 | 9.0 | 1845 | 0.1323 | 0.8765 | 0.7217 | 0.7916 | 0.7063 | 0.4831 | 0.5512 | 0.6667 | 0.0319 | 0.9681 |
0.0007 | 10.0 | 2050 | 0.1337 | 0.8765 | 0.7217 | 0.7916 | 0.7059 | 0.4809 | 0.5493 | 0.6609 | 0.0319 | 0.9681 |
0.0006 | 11.0 | 2255 | 0.1357 | 0.8744 | 0.7217 | 0.7907 | 0.7044 | 0.4809 | 0.5488 | 0.6609 | 0.0320 | 0.9680 |
0.0006 | 12.0 | 2460 | 0.1373 | 0.8701 | 0.7198 | 0.7878 | 0.7027 | 0.4805 | 0.5476 | 0.6638 | 0.0325 | 0.9675 |
0.0005 | 13.0 | 2665 | 0.1395 | 0.8684 | 0.7217 | 0.7883 | 0.6977 | 0.4827 | 0.5477 | 0.6638 | 0.0325 | 0.9675 |
0.0005 | 14.0 | 2870 | 0.1410 | 0.8701 | 0.7198 | 0.7878 | 0.7029 | 0.4815 | 0.5488 | 0.6580 | 0.0325 | 0.9675 |
0.0005 | 15.0 | 3075 | 0.1426 | 0.8644 | 0.7217 | 0.7866 | 0.6957 | 0.4818 | 0.5466 | 0.6551 | 0.0329 | 0.9671 |
0.0004 | 16.0 | 3280 | 0.1432 | 0.8670 | 0.7255 | 0.7900 | 0.6976 | 0.4872 | 0.5508 | 0.6580 | 0.0324 | 0.9676 |
0.0004 | 17.0 | 3485 | 0.1442 | 0.8687 | 0.7236 | 0.7895 | 0.6981 | 0.4849 | 0.5492 | 0.6580 | 0.0324 | 0.9676 |
0.0004 | 18.0 | 3690 | 0.1448 | 0.8670 | 0.7255 | 0.7900 | 0.6985 | 0.4872 | 0.5510 | 0.6580 | 0.0324 | 0.9676 |
0.0004 | 19.0 | 3895 | 0.1451 | 0.8647 | 0.7236 | 0.7879 | 0.6963 | 0.4849 | 0.5485 | 0.6580 | 0.0327 | 0.9673 |
0.0004 | 20.0 | 4100 | 0.1454 | 0.8664 | 0.7217 | 0.7874 | 0.6973 | 0.4836 | 0.5480 | 0.6580 | 0.0327 | 0.9673 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for johnpaulett/ModernRadBERT-cui-classifier
Base model
answerdotai/ModernBERT-base