|
--- |
|
language: en |
|
datasets: |
|
- common_voice |
|
- mozilla-foundation/common_voice_6_0 |
|
metrics: |
|
- wer |
|
- cer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- en |
|
- hf-asr-leaderboard |
|
- mozilla-foundation/common_voice_6_0 |
|
- robust-speech-event |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 English by Jonatas Grosman |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice en |
|
type: common_voice |
|
args: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 19.06 |
|
- name: Test CER |
|
type: cer |
|
value: 7.69 |
|
- name: Test WER (+LM) |
|
type: wer |
|
value: 14.81 |
|
- name: Test CER (+LM) |
|
type: cer |
|
value: 6.84 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: en |
|
metrics: |
|
- name: Dev WER |
|
type: wer |
|
value: 27.72 |
|
- name: Dev CER |
|
type: cer |
|
value: 11.65 |
|
- name: Dev WER (+LM) |
|
type: wer |
|
value: 20.85 |
|
- name: Dev CER (+LM) |
|
type: cer |
|
value: 11.01 |
|
--- |
|
|
|
# Fine-tuned XLSR-53 large model for speech recognition in English |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) |
|
|
|
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows... |
|
|
|
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: |
|
|
|
```python |
|
from huggingsound import SpeechRecognitionModel |
|
|
|
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") |
|
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] |
|
|
|
transcriptions = model.transcribe(audio_paths) |
|
``` |
|
|
|
Writing your own inference script: |
|
|
|
```python |
|
import torch |
|
import librosa |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
LANG_ID = "en" |
|
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" |
|
SAMPLES = 10 |
|
|
|
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
batch["sentence"] = batch["sentence"].upper() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
predicted_sentences = processor.batch_decode(predicted_ids) |
|
|
|
for i, predicted_sentence in enumerate(predicted_sentences): |
|
print("-" * 100) |
|
print("Reference:", test_dataset[i]["sentence"]) |
|
print("Prediction:", predicted_sentence) |
|
``` |
|
|
|
| Reference | Prediction | |
|
| ------------- | ------------- | |
|
| "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT | |
|
| SIX | SIX | |
|
| "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL | |
|
| DO YOU MEAN IT? | DO YOU MEAN IT | |
|
| THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | |
|
| HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q | |
|
| "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY | |
|
| NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | |
|
| SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER | |
|
| GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | |
|
|
|
## Evaluation |
|
|
|
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` |
|
|
|
```bash |
|
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test |
|
``` |
|
|
|
2. To evaluate on `speech-recognition-community-v2/dev_data` |
|
|
|
```bash |
|
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0 |
|
``` |
|
|
|
## Citation |
|
If you want to cite this model you can use this: |
|
|
|
```bibtex |
|
@misc{grosman2021xlsr53-large-english, |
|
title={Fine-tuned {XLSR}-53 large model for speech recognition in {E}nglish}, |
|
author={Grosman, Jonatas}, |
|
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}}, |
|
year={2021} |
|
} |
|
``` |