dit-base_tobacco-small_tobacco3482_kd_MSE
This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7746
- Accuracy: 0.81
- Brier Loss: 0.2775
- Nll: 1.1981
- F1 Micro: 0.81
- F1 Macro: 0.7980
- Ece: 0.1403
- Aurc: 0.0500
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 7 | 7.0083 | 0.14 | 0.9250 | 5.4655 | 0.14 | 0.1468 | 0.2824 | 0.8920 |
No log | 2.0 | 14 | 5.8247 | 0.35 | 0.7844 | 3.6804 | 0.35 | 0.2240 | 0.2541 | 0.5601 |
No log | 3.0 | 21 | 4.1788 | 0.49 | 0.6140 | 1.8305 | 0.49 | 0.4563 | 0.2512 | 0.2825 |
No log | 4.0 | 28 | 2.7911 | 0.66 | 0.4534 | 1.6541 | 0.66 | 0.5604 | 0.2299 | 0.1475 |
No log | 5.0 | 35 | 2.3354 | 0.74 | 0.3892 | 1.8678 | 0.74 | 0.6851 | 0.2104 | 0.0989 |
No log | 6.0 | 42 | 1.9675 | 0.73 | 0.3585 | 1.3943 | 0.7300 | 0.6822 | 0.1846 | 0.0930 |
No log | 7.0 | 49 | 1.7187 | 0.79 | 0.3190 | 1.3921 | 0.79 | 0.7510 | 0.1739 | 0.0760 |
No log | 8.0 | 56 | 1.6507 | 0.77 | 0.3469 | 1.3682 | 0.7700 | 0.7289 | 0.1834 | 0.0851 |
No log | 9.0 | 63 | 1.2713 | 0.79 | 0.3040 | 1.4042 | 0.79 | 0.7622 | 0.1505 | 0.0540 |
No log | 10.0 | 70 | 1.1461 | 0.805 | 0.2852 | 1.3953 | 0.805 | 0.7849 | 0.1371 | 0.0522 |
No log | 11.0 | 77 | 1.1328 | 0.81 | 0.2713 | 1.3113 | 0.81 | 0.7901 | 0.1371 | 0.0442 |
No log | 12.0 | 84 | 1.2818 | 0.8 | 0.3192 | 1.2680 | 0.8000 | 0.7808 | 0.1674 | 0.0725 |
No log | 13.0 | 91 | 1.0493 | 0.805 | 0.2767 | 1.2512 | 0.805 | 0.7846 | 0.1451 | 0.0535 |
No log | 14.0 | 98 | 0.9657 | 0.815 | 0.2802 | 1.1796 | 0.815 | 0.7965 | 0.1680 | 0.0487 |
No log | 15.0 | 105 | 0.9910 | 0.82 | 0.2695 | 1.3658 | 0.82 | 0.8000 | 0.1400 | 0.0475 |
No log | 16.0 | 112 | 0.9828 | 0.81 | 0.2823 | 1.3175 | 0.81 | 0.7974 | 0.1390 | 0.0549 |
No log | 17.0 | 119 | 0.9279 | 0.8 | 0.2815 | 1.3727 | 0.8000 | 0.7882 | 0.1599 | 0.0454 |
No log | 18.0 | 126 | 1.0076 | 0.805 | 0.2929 | 1.2999 | 0.805 | 0.7825 | 0.1480 | 0.0562 |
No log | 19.0 | 133 | 0.9524 | 0.82 | 0.2705 | 1.3029 | 0.82 | 0.8122 | 0.1481 | 0.0454 |
No log | 20.0 | 140 | 1.0584 | 0.795 | 0.3010 | 1.3019 | 0.795 | 0.7699 | 0.1669 | 0.0650 |
No log | 21.0 | 147 | 0.9390 | 0.805 | 0.2775 | 1.4073 | 0.805 | 0.7888 | 0.1211 | 0.0513 |
No log | 22.0 | 154 | 0.9857 | 0.81 | 0.2895 | 1.2894 | 0.81 | 0.7879 | 0.1469 | 0.0548 |
No log | 23.0 | 161 | 0.9137 | 0.795 | 0.2809 | 1.4461 | 0.795 | 0.7872 | 0.1528 | 0.0472 |
No log | 24.0 | 168 | 0.8545 | 0.815 | 0.2844 | 1.2582 | 0.815 | 0.7981 | 0.1466 | 0.0484 |
No log | 25.0 | 175 | 0.8860 | 0.81 | 0.2766 | 1.4525 | 0.81 | 0.8010 | 0.1241 | 0.0457 |
No log | 26.0 | 182 | 0.8624 | 0.83 | 0.2813 | 1.1993 | 0.83 | 0.8222 | 0.1536 | 0.0512 |
No log | 27.0 | 189 | 0.9119 | 0.805 | 0.2894 | 1.4164 | 0.805 | 0.7869 | 0.1576 | 0.0519 |
No log | 28.0 | 196 | 0.9072 | 0.82 | 0.2753 | 1.2927 | 0.82 | 0.8149 | 0.1292 | 0.0514 |
No log | 29.0 | 203 | 0.8428 | 0.8 | 0.2805 | 1.3065 | 0.8000 | 0.7820 | 0.1368 | 0.0502 |
No log | 30.0 | 210 | 0.8696 | 0.81 | 0.2858 | 1.2825 | 0.81 | 0.7989 | 0.1454 | 0.0524 |
No log | 31.0 | 217 | 0.8542 | 0.8 | 0.2861 | 1.2029 | 0.8000 | 0.7766 | 0.1412 | 0.0496 |
No log | 32.0 | 224 | 0.8576 | 0.805 | 0.2896 | 1.3371 | 0.805 | 0.7814 | 0.1513 | 0.0515 |
No log | 33.0 | 231 | 0.8615 | 0.8 | 0.2859 | 1.2347 | 0.8000 | 0.7826 | 0.1473 | 0.0522 |
No log | 34.0 | 238 | 0.8474 | 0.805 | 0.2807 | 1.3510 | 0.805 | 0.7946 | 0.1493 | 0.0524 |
No log | 35.0 | 245 | 0.9058 | 0.79 | 0.3035 | 1.2005 | 0.79 | 0.7768 | 0.1497 | 0.0553 |
No log | 36.0 | 252 | 0.8461 | 0.805 | 0.2897 | 1.2770 | 0.805 | 0.7906 | 0.1599 | 0.0513 |
No log | 37.0 | 259 | 0.8461 | 0.805 | 0.2962 | 1.1989 | 0.805 | 0.7912 | 0.1527 | 0.0533 |
No log | 38.0 | 266 | 0.8646 | 0.815 | 0.2817 | 1.3653 | 0.815 | 0.8031 | 0.1355 | 0.0499 |
No log | 39.0 | 273 | 0.8306 | 0.8 | 0.2905 | 1.1852 | 0.8000 | 0.7862 | 0.1528 | 0.0549 |
No log | 40.0 | 280 | 0.8561 | 0.815 | 0.2838 | 1.2577 | 0.815 | 0.8005 | 0.1431 | 0.0544 |
No log | 41.0 | 287 | 0.8236 | 0.805 | 0.2836 | 1.2093 | 0.805 | 0.7925 | 0.1376 | 0.0490 |
No log | 42.0 | 294 | 0.8221 | 0.805 | 0.2853 | 1.1929 | 0.805 | 0.7805 | 0.1397 | 0.0524 |
No log | 43.0 | 301 | 0.7834 | 0.815 | 0.2666 | 1.2720 | 0.815 | 0.8006 | 0.1316 | 0.0496 |
No log | 44.0 | 308 | 0.8022 | 0.8 | 0.2839 | 1.2009 | 0.8000 | 0.7870 | 0.1457 | 0.0514 |
No log | 45.0 | 315 | 0.8009 | 0.81 | 0.2735 | 1.3505 | 0.81 | 0.7970 | 0.1359 | 0.0494 |
No log | 46.0 | 322 | 0.8029 | 0.81 | 0.2775 | 1.1956 | 0.81 | 0.7983 | 0.1476 | 0.0509 |
No log | 47.0 | 329 | 0.7979 | 0.82 | 0.2818 | 1.2005 | 0.82 | 0.8049 | 0.1466 | 0.0488 |
No log | 48.0 | 336 | 0.7763 | 0.815 | 0.2784 | 1.1905 | 0.815 | 0.7970 | 0.1358 | 0.0512 |
No log | 49.0 | 343 | 0.7917 | 0.81 | 0.2802 | 1.2136 | 0.81 | 0.7989 | 0.1429 | 0.0486 |
No log | 50.0 | 350 | 0.8223 | 0.825 | 0.2809 | 1.1860 | 0.825 | 0.8042 | 0.1567 | 0.0520 |
No log | 51.0 | 357 | 0.7952 | 0.82 | 0.2747 | 1.2074 | 0.82 | 0.8078 | 0.1377 | 0.0484 |
No log | 52.0 | 364 | 0.7868 | 0.825 | 0.2714 | 1.2850 | 0.825 | 0.8170 | 0.1371 | 0.0476 |
No log | 53.0 | 371 | 0.8111 | 0.805 | 0.2869 | 1.1892 | 0.805 | 0.7954 | 0.1467 | 0.0524 |
No log | 54.0 | 378 | 0.7739 | 0.81 | 0.2755 | 1.1946 | 0.81 | 0.7953 | 0.1567 | 0.0486 |
No log | 55.0 | 385 | 0.7930 | 0.825 | 0.2825 | 1.2000 | 0.825 | 0.8087 | 0.1546 | 0.0518 |
No log | 56.0 | 392 | 0.7826 | 0.815 | 0.2789 | 1.1953 | 0.815 | 0.8031 | 0.1353 | 0.0514 |
No log | 57.0 | 399 | 0.7716 | 0.82 | 0.2714 | 1.3115 | 0.82 | 0.8079 | 0.1207 | 0.0470 |
No log | 58.0 | 406 | 0.8036 | 0.815 | 0.2878 | 1.1875 | 0.815 | 0.7945 | 0.1469 | 0.0531 |
No log | 59.0 | 413 | 0.7714 | 0.82 | 0.2722 | 1.2787 | 0.82 | 0.8128 | 0.1264 | 0.0467 |
No log | 60.0 | 420 | 0.7671 | 0.825 | 0.2720 | 1.2722 | 0.825 | 0.8136 | 0.1378 | 0.0476 |
No log | 61.0 | 427 | 0.7885 | 0.815 | 0.2834 | 1.1798 | 0.815 | 0.8007 | 0.1480 | 0.0526 |
No log | 62.0 | 434 | 0.7621 | 0.82 | 0.2706 | 1.3459 | 0.82 | 0.8102 | 0.1156 | 0.0482 |
No log | 63.0 | 441 | 0.7691 | 0.81 | 0.2797 | 1.1379 | 0.81 | 0.7959 | 0.1429 | 0.0506 |
No log | 64.0 | 448 | 0.7699 | 0.81 | 0.2776 | 1.1964 | 0.81 | 0.7974 | 0.1473 | 0.0494 |
No log | 65.0 | 455 | 0.7693 | 0.82 | 0.2739 | 1.2089 | 0.82 | 0.8106 | 0.1390 | 0.0481 |
No log | 66.0 | 462 | 0.7891 | 0.81 | 0.2805 | 1.1989 | 0.81 | 0.7927 | 0.1530 | 0.0513 |
No log | 67.0 | 469 | 0.7806 | 0.82 | 0.2798 | 1.2033 | 0.82 | 0.8068 | 0.1408 | 0.0485 |
No log | 68.0 | 476 | 0.7877 | 0.82 | 0.2815 | 1.1896 | 0.82 | 0.8054 | 0.1376 | 0.0501 |
No log | 69.0 | 483 | 0.7649 | 0.825 | 0.2731 | 1.1567 | 0.825 | 0.8155 | 0.1371 | 0.0479 |
No log | 70.0 | 490 | 0.7740 | 0.82 | 0.2764 | 1.1929 | 0.82 | 0.8107 | 0.1250 | 0.0511 |
No log | 71.0 | 497 | 0.7657 | 0.82 | 0.2744 | 1.2762 | 0.82 | 0.8068 | 0.1374 | 0.0488 |
0.4804 | 72.0 | 504 | 0.7887 | 0.805 | 0.2839 | 1.1851 | 0.805 | 0.7914 | 0.1524 | 0.0513 |
0.4804 | 73.0 | 511 | 0.7662 | 0.815 | 0.2759 | 1.1973 | 0.815 | 0.8010 | 0.1395 | 0.0496 |
0.4804 | 74.0 | 518 | 0.7706 | 0.825 | 0.2742 | 1.2020 | 0.825 | 0.8196 | 0.1398 | 0.0492 |
0.4804 | 75.0 | 525 | 0.7780 | 0.815 | 0.2802 | 1.1881 | 0.815 | 0.7970 | 0.1392 | 0.0505 |
0.4804 | 76.0 | 532 | 0.7731 | 0.825 | 0.2745 | 1.2695 | 0.825 | 0.8152 | 0.1548 | 0.0485 |
0.4804 | 77.0 | 539 | 0.7743 | 0.825 | 0.2762 | 1.2039 | 0.825 | 0.8109 | 0.1326 | 0.0490 |
0.4804 | 78.0 | 546 | 0.7782 | 0.805 | 0.2792 | 1.2001 | 0.805 | 0.7905 | 0.1381 | 0.0506 |
0.4804 | 79.0 | 553 | 0.7786 | 0.81 | 0.2807 | 1.1929 | 0.81 | 0.7980 | 0.1394 | 0.0505 |
0.4804 | 80.0 | 560 | 0.7759 | 0.82 | 0.2772 | 1.1973 | 0.82 | 0.8081 | 0.1296 | 0.0494 |
0.4804 | 81.0 | 567 | 0.7703 | 0.82 | 0.2758 | 1.2069 | 0.82 | 0.8096 | 0.1405 | 0.0491 |
0.4804 | 82.0 | 574 | 0.7749 | 0.81 | 0.2777 | 1.1996 | 0.81 | 0.7980 | 0.1502 | 0.0501 |
0.4804 | 83.0 | 581 | 0.7768 | 0.815 | 0.2777 | 1.2009 | 0.815 | 0.8052 | 0.1237 | 0.0496 |
0.4804 | 84.0 | 588 | 0.7761 | 0.815 | 0.2778 | 1.1986 | 0.815 | 0.8008 | 0.1333 | 0.0495 |
0.4804 | 85.0 | 595 | 0.7771 | 0.815 | 0.2780 | 1.1984 | 0.815 | 0.8008 | 0.1335 | 0.0497 |
0.4804 | 86.0 | 602 | 0.7755 | 0.81 | 0.2777 | 1.1987 | 0.81 | 0.7980 | 0.1327 | 0.0501 |
0.4804 | 87.0 | 609 | 0.7749 | 0.81 | 0.2776 | 1.1974 | 0.81 | 0.7980 | 0.1261 | 0.0499 |
0.4804 | 88.0 | 616 | 0.7746 | 0.815 | 0.2776 | 1.1981 | 0.815 | 0.8052 | 0.1238 | 0.0497 |
0.4804 | 89.0 | 623 | 0.7744 | 0.81 | 0.2776 | 1.1981 | 0.81 | 0.7980 | 0.1283 | 0.0500 |
0.4804 | 90.0 | 630 | 0.7743 | 0.81 | 0.2774 | 1.1987 | 0.81 | 0.7980 | 0.1346 | 0.0499 |
0.4804 | 91.0 | 637 | 0.7741 | 0.81 | 0.2774 | 1.1981 | 0.81 | 0.7980 | 0.1379 | 0.0499 |
0.4804 | 92.0 | 644 | 0.7742 | 0.81 | 0.2774 | 1.1982 | 0.81 | 0.7980 | 0.1403 | 0.0499 |
0.4804 | 93.0 | 651 | 0.7745 | 0.81 | 0.2775 | 1.1982 | 0.81 | 0.7980 | 0.1403 | 0.0500 |
0.4804 | 94.0 | 658 | 0.7746 | 0.81 | 0.2776 | 1.1978 | 0.81 | 0.7980 | 0.1316 | 0.0500 |
0.4804 | 95.0 | 665 | 0.7745 | 0.81 | 0.2775 | 1.1982 | 0.81 | 0.7980 | 0.1380 | 0.0499 |
0.4804 | 96.0 | 672 | 0.7746 | 0.81 | 0.2775 | 1.1981 | 0.81 | 0.7980 | 0.1315 | 0.0500 |
0.4804 | 97.0 | 679 | 0.7746 | 0.81 | 0.2775 | 1.1981 | 0.81 | 0.7980 | 0.1403 | 0.0500 |
0.4804 | 98.0 | 686 | 0.7746 | 0.81 | 0.2775 | 1.1981 | 0.81 | 0.7980 | 0.1403 | 0.0500 |
0.4804 | 99.0 | 693 | 0.7746 | 0.81 | 0.2775 | 1.1981 | 0.81 | 0.7980 | 0.1403 | 0.0500 |
0.4804 | 100.0 | 700 | 0.7746 | 0.81 | 0.2775 | 1.1981 | 0.81 | 0.7980 | 0.1403 | 0.0500 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jordyvl/dit-base_tobacco-small_tobacco3482_kd_MSE
Base model
WinKawaks/vit-small-patch16-224