julian-schelb's picture
Update README.md
7df89e1
|
raw
history blame
2.62 kB
metadata
language:
  - en
  - de
  - fr
  - zh
  - ne
  - multilingual
widget:
  - text: >-
      In December 1903 in France the Royal Swedish Academy of Sciences awarded
      Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics.
  - text: >-
      Für Richard Phillips Feynman war es immer wichtig in New York, die
      unanschaulichen Gesetzmäßigkeiten der Quantenphysik Laien und Studenten
      nahezubringen und verständlich zu machen.
  - text: My name is Julian and I live in Constance
  - text: >-
      Terence David John Pratchett est né le 28 avril 1948 à Beaconsfield dans
      le Buckinghamshire, en Angleterre.
  - text: >-
      北京市,通称北京(汉语拼音:Běijīng;邮政式拼音:Peking),简称“京”,是中华人民共和国的首都及直辖市,是该国的政治、文化、科技、教育、军事和国际交往中心,是一座全球城市,是世界人口第三多的城市和人口最多的首都,具有重要的国际影响力,同時也是目前世界唯一的“双奥之城”,即唯一既主办过夏季
  - text: >-
      काठमाडौँ नेपालको सङ्घीय राजधानी र नेपालको सबैभन्दा बढी जनसङ्ख्या भएको सहर
      हो।
tags:
  - roberta
license: mit
datasets:
  - wikiann

Roberta for Multilingual Named Entity Recognition

Model description

Limitations and bias

This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.

Training data

Metrics

Usage

from transformers import AutoTokenizer, AutoModelForTokenClassification 

tokenizer = AutoTokenizer.from_pretrained("julian-schelb/roberta-ner-multilingual/", add_prefix_space=True)                          
model = AutoModelForTokenClassification.from_pretrained("julian-schelb/roberta-ner-multilingual/")

text = "In December 1903 in France the Royal Swedish Academy of Sciences awarded Pierre Curie, Marie Curie, and Henri Becquerel the Nobel Prize in Physics."

inputs = tokenizer(
    text, 
    add_special_tokens=False, 
    return_tensors="pt"
)

with torch.no_grad():
    logits = model(**inputs).logits

predicted_token_class_ids = logits.argmax(-1)

# Note that tokens are classified rather then input words which means that
# there might be more predicted token classes than words.
# Multiple token classes might account for the same word
predicted_tokens_classes = [model_tuned.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
predicted_tokens_classes