File size: 8,240 Bytes
13607a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# coding=utf-8
# [Apache-2.0] Modified from https://github.com/OFA-Sys/OFA
""" TiO model configuration"""
import warnings
from transformers import PretrainedConfig


class TiOConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`~TiOModel`]. It is used to instantiate an TiO
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the TiO.
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50265):
            Vocabulary size of the TiO model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~TiOModel`] or [`~TFTiOModel`].
        d_model (`int`, *optional*, defaults to 1024):
            Dimension of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 12):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 12):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 4096):
            Dimension of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
    """

    model_type = "tio"
    keys_to_ignore_at_inference = ["past_key_values"]

    attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}

    def __init__(
        self,
        vocab_size=59457,
        max_position_embeddings=1024,
        encoder_layers=4,
        encoder_ffn_dim=512 * 4,
        encoder_attention_heads=8,
        decoder_layers=4,
        decoder_ffn_dim=512 * 4,
        decoder_attention_heads=8,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        use_cache=True,
        is_encoder_decoder=True,
        activation_function="gelu",
        d_model=512,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        classifier_dropout=0.0,
        scale_embedding=False,
        pad_token_id=1,
        bos_token_id=0,
        decoder_start_token_id=0,
        eos_token_id=2,
        forced_eos_token_id=2,
        encoder_normalize_before=True,
        decoder_normalize_before=True,
        normformer=True,
        encoder_drop_path_rate=0.0,
        decoder_drop_path_rate=0.0,
        layernorm_embedding=True,
        patch_layernorm_embedding=True,
        resnet_type="resnet101",
        resnet_model_path=None,
        resnet_drop_path_rate=0.0,
        token_bucket_size=256,
        image_bucket_size=42,
        add_type_embedding=True,
        share_decoder_input_output_embed=True,
        attn_scale_factor=2.0,
        code_layernorm_embedding=True,
        code_image_size=128,
        entangle_position_embedding=False,
        label_smoothing=0.1,
        **kwargs
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.d_model = d_model
        self.encoder_ffn_dim = encoder_ffn_dim
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.classifier_dropout = classifier_dropout
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True
        self.encoder_normalize_before = encoder_normalize_before
        self.decoder_normalize_before = decoder_normalize_before
        self.normformer = normformer
        self.encoder_drop_path_rate = encoder_drop_path_rate
        self.decoder_drop_path_rate = decoder_drop_path_rate
        self.layernorm_embedding = layernorm_embedding
        self.patch_layernorm_embedding = patch_layernorm_embedding
        self.resnet_type = resnet_type
        self.resnet_model_path = resnet_model_path
        self.resnet_drop_path_rate = resnet_drop_path_rate
        self.token_bucket_size = token_bucket_size
        self.image_bucket_size = image_bucket_size
        self.add_type_embedding = add_type_embedding
        self.share_decoder_input_output_embed = share_decoder_input_output_embed
        self.attn_scale_factor = attn_scale_factor
        self.code_layernorm_embedding = code_layernorm_embedding
        self.code_image_size = code_image_size
        self.entangle_position_embedding = entangle_position_embedding

        self.label_smoothing = label_smoothing

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            decoder_start_token_id=bos_token_id,
            forced_eos_token_id=forced_eos_token_id,
            **kwargs,
        )

        # ensure backward compatibility for BART CNN models
        if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
            self.forced_bos_token_id = self.bos_token_id
            warnings.warn(
                f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
                "The config can simply be saved and uploaded again to be fixed."
            )