opt-babylm2-20-epochs_seed-42_3e-4

This model was trained from scratch on the kanishka/babylm2-sentence-tokenized dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4950
  • Accuracy: 0.5193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 32000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.8017 1.0 21397 2.9043 0.4674
2.5697 2.0 42794 2.6914 0.4903
2.4593 3.0 64191 2.5998 0.5009
2.3962 4.0 85588 2.5532 0.5062
2.3371 5.0 106985 2.5247 0.5100
2.3029 6.0 128382 2.5101 0.5121
2.2663 7.0 149779 2.4970 0.5143
2.2435 8.0 171176 2.4892 0.5155
2.2171 9.0 192573 2.4831 0.5163
2.1902 10.0 213970 2.4811 0.5171
2.1695 11.0 235367 2.4788 0.5177
2.1548 12.0 256764 2.4811 0.5182
2.1307 13.0 278161 2.4788 0.5186
2.1228 14.0 299558 2.4802 0.5188
2.0984 15.0 320955 2.4807 0.5190
2.0845 16.0 342352 2.4828 0.5192
2.0687 17.0 363749 2.4844 0.5193
2.0578 18.0 385146 2.4892 0.5193
2.0413 19.0 406543 2.4918 0.5193
2.0185 20.0 427940 2.4950 0.5193

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
14
Safetensors
Model size
97.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train kanishka/opt-babylm2-20-epochs_seed-42_3e-4

Evaluation results