YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Approach
This model of Mamba architecture has been pre-trained on approximately 400B tokens of Chinese and English corpora, followed by fine-tuning on Chinese and English instructions.
Usage
import torch
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from transformers import AutoTokenizer
repo_id = 'mamba-1.4b-aquila-400b-sft'
device = f"cuda:0"
model = MambaLMHeadModel.from_pretrained(repo_id, dtype=torch.bfloat16, device=device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(repo_id)
text = "写一首春节主题的七言绝句"
prompt = f"A chat between a curious human and an artificial intelligence assistant. "
prompt += f"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n"
prompt += f"<|startofpiece|>{text}<|endofpiece|>"
tokens = tokenizer.encode_plus(prompt, truncation=False)["input_ids"]
tokens = torch.tensor(tokens)[None,].to(device)
with torch.no_grad():
input_length = len(tokens[0])
out_ids = model.generate(input_ids=tokens, max_length=input_length+200, temperature=1.0,
top_p=0.95, eos_token_id=tokenizer.eos_token_id, cg=True, top_k=15)
out_ids = out_ids[0][input_length:].cpu().numpy()
out_text = tokenizer.decode(out_ids.tolist())
print(out_text)
花红柳绿庆春节, 爆竹声声笑语添。 团圆喜乐连宵庆, 福气满门满地欢。
References
The Mamba architecture was introduced in Mamba: Linear-Time Sequence Modeling with Selective State Spaces.
The official implementation is here: https://github.com/state-spaces/mamba/tree/main
- Downloads last month
- 3