leabum/distilbert-base-uncased-finetuned-cuad
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.5490
- Train End Logits Accuracy: 0.9403
- Train Start Logits Accuracy: 0.9403
- Validation Loss: 0.3567
- Validation End Logits Accuracy: 0.9612
- Validation Start Logits Accuracy: 0.9612
- Epoch: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 220, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
1.2209 | 0.9205 | 0.9017 | 0.3867 | 0.9612 | 0.9612 | 0 |
0.5490 | 0.9403 | 0.9403 | 0.3567 | 0.9612 | 0.9612 | 1 |
Framework versions
- Transformers 4.21.1
- TensorFlow 2.8.2
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.