Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/tinyllama-chat
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 6c4b6aad347f185e_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/6c4b6aad347f185e_train_data.json
  type:
    field_input: subject
    field_instruction: prompt
    field_output: target_true
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso07/19a0299a-f77f-4922-a1f9-a2e5c689d368
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/6c4b6aad347f185e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 19a0299a-f77f-4922-a1f9-a2e5c689d368
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 19a0299a-f77f-4922-a1f9-a2e5c689d368
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

19a0299a-f77f-4922-a1f9-a2e5c689d368

This model is a fine-tuned version of unsloth/tinyllama-chat on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
0.0 0.0008 1 nan
0.0 0.0070 9 nan
0.0 0.0140 18 nan
0.0 0.0209 27 nan
0.0 0.0279 36 nan
0.0 0.0349 45 nan
0.0 0.0419 54 nan
0.0 0.0488 63 nan
0.0 0.0558 72 nan
0.0 0.0628 81 nan
0.0 0.0698 90 nan
0.0 0.0767 99 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
59
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso07/19a0299a-f77f-4922-a1f9-a2e5c689d368

Adapter
(125)
this model