Visualize in Weights & Biases

results

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.2518 0.0530 100 1.3453
1.3137 0.1059 200 1.2820
1.2681 0.1589 300 1.2684
1.2611 0.2118 400 1.2625
1.2599 0.2648 500 1.2587
1.2709 0.3177 600 1.2561
1.2607 0.3707 700 1.2537
1.2502 0.4236 800 1.2515
1.2475 0.4766 900 1.2494
1.2479 0.5295 1000 1.2476
1.2535 0.5825 1100 1.2469
1.2546 0.6354 1200 1.2455
1.2498 0.6884 1300 1.2440
1.2445 0.7413 1400 1.2433
1.247 0.7943 1500 1.2423
1.2438 0.8472 1600 1.2418
1.2434 0.9002 1700 1.2413
1.2425 0.9531 1800 1.2406

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lucifertrj/results

Adapter
(416)
this model