Luqman bin Daut's picture
1

Luqman bin Daut

luqman2511
·

AI & ML interests

None yet

Recent Activity

updated a model 9 days ago
Luq2211/MmlLoq1.0
View all activity

Organizations

Luqman 's profile picture

luqman2511's activity

reacted to tomaarsen's post with ❤️ 10 months ago
view post
Post
I remember very well that about two years ago, 0-shot named entity recognition (i.e. where you can choose any labels on the fly) was completely infeasible. Fast forward a year, and Universal-NER/UniNER-7B-all surprised me by showing that 0-shot NER is possible! However, I had a bunch of concerns that prevented me from ever adopting it myself. For example, the model was 7B parameters, only worked with 1 custom label at a time, and it had a cc-by-nc-4.0 license.

Since then, a little known research paper introduced GLiNER, which was a modified & finetuned variant of the microsoft/deberta-v3-base line of models. Notably, GLiNER outperforms UniNER-7B, despite being almost 2 orders of magnitude smaller! It also allows for multiple labels at once, supports nested NER, and the models are Apache 2.0.

Very recently, the models were uploaded to Hugging Face, and I was inspired to create a demo for the English model. The demo runs on CPU, and can still very efficiently compute labels with great performance. I'm very impressed at the models.

There are two models right now:
* base (english): urchade/gliner_base
* multi (multilingual): urchade/gliner_multi

And my demo to experiment with the base model can be found here: https://huggingface.co/spaces/tomaarsen/gliner_base
·