tags: | |
- autotrain | |
- tabular | |
- regression | |
- tabular-regression | |
datasets: | |
- rea-svm/autotrain-data | |
# Model Trained Using AutoTrain | |
- Problem type: Tabular regression | |
## Validation Metrics | |
- r2: -13.723120886842382 | |
- mse: 38015883737.055504 | |
- mae: 174448.73032973852 | |
- rmse: 194976.62356563544 | |
- rmsle: 2.6073960566969823 | |
- loss: 194976.62356563544 | |
## Best Params | |
- C: 60.27729201980406 | |
- fit_intercept: False | |
- loss: epsilon_insensitive | |
- epsilon: 0.00020827552565594136 | |
- max_iter: 9903 | |
## Usage | |
```python | |
import json | |
import joblib | |
import pandas as pd | |
model = joblib.load('model.joblib') | |
config = json.load(open('config.json')) | |
features = config['features'] | |
# data = pd.read_csv("data.csv") | |
data = data[features] | |
predictions = model.predict(data) # or model.predict_proba(data) | |
# predictions can be converted to original labels using label_encoders.pkl | |
``` | |