Visualize in Weights & Biases

distilbert-base-multilingual-cased-2-classification-contract-sections-v1

This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2701
  • Accuracy: 0.9677

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9622 1.0 1000 1.7976 0.5933
0.984 2.0 2000 0.8920 0.8725
0.4814 3.0 3000 0.4687 0.9205
0.2581 4.0 4000 0.3044 0.9313
0.1556 5.0 5000 0.2370 0.9343
0.0978 6.0 6000 0.1958 0.9455
0.0807 7.0 7000 0.1774 0.948
0.0609 8.0 8000 0.1741 0.9515
0.0481 9.0 9000 0.1567 0.9565
0.0399 10.0 10000 0.1618 0.959
0.0429 11.0 11000 0.1470 0.965
0.0324 12.0 12000 0.1480 0.9667
0.0381 13.0 13000 0.1595 0.9637
0.0202 14.0 14000 0.1697 0.9613
0.0234 15.0 15000 0.1570 0.9685
0.0175 16.0 16000 0.1503 0.9663
0.0192 17.0 17000 0.1647 0.9657
0.0152 18.0 18000 0.1551 0.9708
0.0183 19.0 19000 0.1663 0.9683
0.0126 20.0 20000 0.1751 0.9623
0.013 21.0 21000 0.1703 0.9683
0.0095 22.0 22000 0.1834 0.964
0.0094 23.0 23000 0.1937 0.9623
0.0115 24.0 24000 0.1956 0.961
0.011 25.0 25000 0.1722 0.966
0.0089 26.0 26000 0.1850 0.966
0.0077 27.0 27000 0.1823 0.9663
0.0068 28.0 28000 0.1757 0.966
0.0064 29.0 29000 0.1831 0.9653
0.0058 30.0 30000 0.1906 0.9692
0.0067 31.0 31000 0.1939 0.9655
0.0065 32.0 32000 0.1895 0.9677
0.0074 33.0 33000 0.2113 0.9655
0.0046 34.0 34000 0.1990 0.9695
0.0063 35.0 35000 0.2073 0.9633
0.0029 36.0 36000 0.2171 0.968
0.0026 37.0 37000 0.2089 0.9655
0.0039 38.0 38000 0.2030 0.9673
0.0006 39.0 39000 0.2188 0.9692
0.0039 40.0 40000 0.2385 0.9635
0.003 41.0 41000 0.1982 0.9702
0.0013 42.0 42000 0.2411 0.9623
0.002 43.0 43000 0.2111 0.9683
0.0024 44.0 44000 0.2229 0.966
0.003 45.0 45000 0.2298 0.9655
0.0019 46.0 46000 0.2333 0.9653
0.0015 47.0 47000 0.2370 0.968
0.002 48.0 48000 0.2474 0.9643
0.0013 49.0 49000 0.2424 0.9645
0.002 50.0 50000 0.2471 0.967
0.003 51.0 51000 0.2567 0.9627
0.0005 52.0 52000 0.2434 0.9688
0.0022 53.0 53000 0.2486 0.9645
0.002 54.0 54000 0.2422 0.9688
0.0009 55.0 55000 0.2434 0.9685
0.0002 56.0 56000 0.2408 0.9683
0.0019 57.0 57000 0.2510 0.965
0.0024 58.0 58000 0.2695 0.964
0.0001 59.0 59000 0.2514 0.9663
0.0017 60.0 60000 0.2619 0.9637
0.0013 61.0 61000 0.2756 0.9643
0.0013 62.0 62000 0.2531 0.9665
0.0003 63.0 63000 0.2546 0.9675
0.0014 64.0 64000 0.2571 0.9667
0.0009 65.0 65000 0.2920 0.9623
0.0012 66.0 66000 0.2739 0.9647
0.0005 67.0 67000 0.2551 0.967
0.0013 68.0 68000 0.2640 0.9653
0.0009 69.0 69000 0.2640 0.9647
0.0009 70.0 70000 0.2802 0.965
0.0001 71.0 71000 0.2696 0.9643
0.0018 72.0 72000 0.2783 0.9643
0.0012 73.0 73000 0.2718 0.9665
0.0003 74.0 74000 0.2534 0.9698
0.0018 75.0 75000 0.2565 0.9657
0.0021 76.0 76000 0.2813 0.9637
0.0011 77.0 77000 0.2779 0.9633
0.0009 78.0 78000 0.2627 0.9667
0.0005 79.0 79000 0.2655 0.9685
0.001 80.0 80000 0.2718 0.9657
0.0018 81.0 81000 0.2643 0.968
0.0018 82.0 82000 0.2727 0.9655
0.001 83.0 83000 0.2747 0.9655
0.002 84.0 84000 0.2844 0.9637
0.0 85.0 85000 0.2634 0.9675
0.0016 86.0 86000 0.2762 0.9663
0.0008 87.0 87000 0.2599 0.9683
0.0 88.0 88000 0.2575 0.9683
0.0011 89.0 89000 0.2636 0.9677
0.0021 90.0 90000 0.2725 0.9665
0.0009 91.0 91000 0.2672 0.967
0.0 92.0 92000 0.2689 0.9673
0.0014 93.0 93000 0.2779 0.9653
0.0008 94.0 94000 0.2776 0.9653
0.0005 95.0 95000 0.2765 0.9657
0.0011 96.0 96000 0.2721 0.967
0.0013 97.0 97000 0.2716 0.9667
0.0006 98.0 98000 0.2709 0.9673
0.0002 99.0 99000 0.2702 0.9675
0.0006 100.0 100000 0.2701 0.9677

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for marcelovidigal/distilbert-base-multilingual-cased-2-classification-contract-sections-v1

Finetuned
(230)
this model