distilbert-base-multilingual-cased-2-classification-contract-sections-v1
This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2701
- Accuracy: 0.9677
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9622 | 1.0 | 1000 | 1.7976 | 0.5933 |
0.984 | 2.0 | 2000 | 0.8920 | 0.8725 |
0.4814 | 3.0 | 3000 | 0.4687 | 0.9205 |
0.2581 | 4.0 | 4000 | 0.3044 | 0.9313 |
0.1556 | 5.0 | 5000 | 0.2370 | 0.9343 |
0.0978 | 6.0 | 6000 | 0.1958 | 0.9455 |
0.0807 | 7.0 | 7000 | 0.1774 | 0.948 |
0.0609 | 8.0 | 8000 | 0.1741 | 0.9515 |
0.0481 | 9.0 | 9000 | 0.1567 | 0.9565 |
0.0399 | 10.0 | 10000 | 0.1618 | 0.959 |
0.0429 | 11.0 | 11000 | 0.1470 | 0.965 |
0.0324 | 12.0 | 12000 | 0.1480 | 0.9667 |
0.0381 | 13.0 | 13000 | 0.1595 | 0.9637 |
0.0202 | 14.0 | 14000 | 0.1697 | 0.9613 |
0.0234 | 15.0 | 15000 | 0.1570 | 0.9685 |
0.0175 | 16.0 | 16000 | 0.1503 | 0.9663 |
0.0192 | 17.0 | 17000 | 0.1647 | 0.9657 |
0.0152 | 18.0 | 18000 | 0.1551 | 0.9708 |
0.0183 | 19.0 | 19000 | 0.1663 | 0.9683 |
0.0126 | 20.0 | 20000 | 0.1751 | 0.9623 |
0.013 | 21.0 | 21000 | 0.1703 | 0.9683 |
0.0095 | 22.0 | 22000 | 0.1834 | 0.964 |
0.0094 | 23.0 | 23000 | 0.1937 | 0.9623 |
0.0115 | 24.0 | 24000 | 0.1956 | 0.961 |
0.011 | 25.0 | 25000 | 0.1722 | 0.966 |
0.0089 | 26.0 | 26000 | 0.1850 | 0.966 |
0.0077 | 27.0 | 27000 | 0.1823 | 0.9663 |
0.0068 | 28.0 | 28000 | 0.1757 | 0.966 |
0.0064 | 29.0 | 29000 | 0.1831 | 0.9653 |
0.0058 | 30.0 | 30000 | 0.1906 | 0.9692 |
0.0067 | 31.0 | 31000 | 0.1939 | 0.9655 |
0.0065 | 32.0 | 32000 | 0.1895 | 0.9677 |
0.0074 | 33.0 | 33000 | 0.2113 | 0.9655 |
0.0046 | 34.0 | 34000 | 0.1990 | 0.9695 |
0.0063 | 35.0 | 35000 | 0.2073 | 0.9633 |
0.0029 | 36.0 | 36000 | 0.2171 | 0.968 |
0.0026 | 37.0 | 37000 | 0.2089 | 0.9655 |
0.0039 | 38.0 | 38000 | 0.2030 | 0.9673 |
0.0006 | 39.0 | 39000 | 0.2188 | 0.9692 |
0.0039 | 40.0 | 40000 | 0.2385 | 0.9635 |
0.003 | 41.0 | 41000 | 0.1982 | 0.9702 |
0.0013 | 42.0 | 42000 | 0.2411 | 0.9623 |
0.002 | 43.0 | 43000 | 0.2111 | 0.9683 |
0.0024 | 44.0 | 44000 | 0.2229 | 0.966 |
0.003 | 45.0 | 45000 | 0.2298 | 0.9655 |
0.0019 | 46.0 | 46000 | 0.2333 | 0.9653 |
0.0015 | 47.0 | 47000 | 0.2370 | 0.968 |
0.002 | 48.0 | 48000 | 0.2474 | 0.9643 |
0.0013 | 49.0 | 49000 | 0.2424 | 0.9645 |
0.002 | 50.0 | 50000 | 0.2471 | 0.967 |
0.003 | 51.0 | 51000 | 0.2567 | 0.9627 |
0.0005 | 52.0 | 52000 | 0.2434 | 0.9688 |
0.0022 | 53.0 | 53000 | 0.2486 | 0.9645 |
0.002 | 54.0 | 54000 | 0.2422 | 0.9688 |
0.0009 | 55.0 | 55000 | 0.2434 | 0.9685 |
0.0002 | 56.0 | 56000 | 0.2408 | 0.9683 |
0.0019 | 57.0 | 57000 | 0.2510 | 0.965 |
0.0024 | 58.0 | 58000 | 0.2695 | 0.964 |
0.0001 | 59.0 | 59000 | 0.2514 | 0.9663 |
0.0017 | 60.0 | 60000 | 0.2619 | 0.9637 |
0.0013 | 61.0 | 61000 | 0.2756 | 0.9643 |
0.0013 | 62.0 | 62000 | 0.2531 | 0.9665 |
0.0003 | 63.0 | 63000 | 0.2546 | 0.9675 |
0.0014 | 64.0 | 64000 | 0.2571 | 0.9667 |
0.0009 | 65.0 | 65000 | 0.2920 | 0.9623 |
0.0012 | 66.0 | 66000 | 0.2739 | 0.9647 |
0.0005 | 67.0 | 67000 | 0.2551 | 0.967 |
0.0013 | 68.0 | 68000 | 0.2640 | 0.9653 |
0.0009 | 69.0 | 69000 | 0.2640 | 0.9647 |
0.0009 | 70.0 | 70000 | 0.2802 | 0.965 |
0.0001 | 71.0 | 71000 | 0.2696 | 0.9643 |
0.0018 | 72.0 | 72000 | 0.2783 | 0.9643 |
0.0012 | 73.0 | 73000 | 0.2718 | 0.9665 |
0.0003 | 74.0 | 74000 | 0.2534 | 0.9698 |
0.0018 | 75.0 | 75000 | 0.2565 | 0.9657 |
0.0021 | 76.0 | 76000 | 0.2813 | 0.9637 |
0.0011 | 77.0 | 77000 | 0.2779 | 0.9633 |
0.0009 | 78.0 | 78000 | 0.2627 | 0.9667 |
0.0005 | 79.0 | 79000 | 0.2655 | 0.9685 |
0.001 | 80.0 | 80000 | 0.2718 | 0.9657 |
0.0018 | 81.0 | 81000 | 0.2643 | 0.968 |
0.0018 | 82.0 | 82000 | 0.2727 | 0.9655 |
0.001 | 83.0 | 83000 | 0.2747 | 0.9655 |
0.002 | 84.0 | 84000 | 0.2844 | 0.9637 |
0.0 | 85.0 | 85000 | 0.2634 | 0.9675 |
0.0016 | 86.0 | 86000 | 0.2762 | 0.9663 |
0.0008 | 87.0 | 87000 | 0.2599 | 0.9683 |
0.0 | 88.0 | 88000 | 0.2575 | 0.9683 |
0.0011 | 89.0 | 89000 | 0.2636 | 0.9677 |
0.0021 | 90.0 | 90000 | 0.2725 | 0.9665 |
0.0009 | 91.0 | 91000 | 0.2672 | 0.967 |
0.0 | 92.0 | 92000 | 0.2689 | 0.9673 |
0.0014 | 93.0 | 93000 | 0.2779 | 0.9653 |
0.0008 | 94.0 | 94000 | 0.2776 | 0.9653 |
0.0005 | 95.0 | 95000 | 0.2765 | 0.9657 |
0.0011 | 96.0 | 96000 | 0.2721 | 0.967 |
0.0013 | 97.0 | 97000 | 0.2716 | 0.9667 |
0.0006 | 98.0 | 98000 | 0.2709 | 0.9673 |
0.0002 | 99.0 | 99000 | 0.2702 | 0.9675 |
0.0006 | 100.0 | 100000 | 0.2701 | 0.9677 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 7