zephyr-7b-gemma-sft-alpaca
This model is a fine-tuned version of google/gemma-7b on the masakhane/african-translated-alpaca dataset. It achieves the following results on the evaluation set:
- Loss: 0.2737
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8671 | 1.0 | 5882 | 0.7445 |
0.5235 | 2.0 | 11764 | 0.3905 |
0.3309 | 3.0 | 17646 | 0.2737 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
Usage
# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="masakhane/zephyr-7b-gemma-sft-african-alpaca", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who answewrs question in given language",
},
{"role": "user", "content": "what is the 3 biggest countrys in Africa?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate<eos>
# <|user|>
# what is the 3 biggest countrys in Africa?<eos>
# <|assistant|>
# The 3 biggest countries in Africa are Nigeria, Ethiopia and South Africa.
Quantized Versions through bitsandbytes
import torch
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("masakhane/zephyr-7b-gemma-sft-african-alpaca")
model = AutoModelForCausalLM.from_pretrained("masakhane/zephyr-7b-gemma-sft-african-alpaca", quantization_config=quantization_config)
pipe = pipeline("text-generation", model=model,tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto")
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who answewrs question in given language",
},
{"role": "user", "content": "list languages in Africa?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 29
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for masakhane/zephyr-7b-gemma-sft-african-alpaca
Base model
google/gemma-7b