BERT NMB+ (Disinformation Sequence Classification):
Classifies 512 chunks of a news article as "Likely" or "Unlikely" biased/disinformation.
Fine-tuned BERT (bert-base-uncased) on the headline
, aritcle_text
and text_label
fields in the News Media Bias Plus Dataset.
This model was trained with weighted sampling so that each batch contains 50% 'Likely' examples and 50% 'Unlikely' examples. The same model trained without weighted sampling is here, and got slightly better taining eval metrics. However, this model preformed better when predictions were evaluated by gpt-4o as a judge.
Metics
Evaluated on a 0.1 random sample of the NMB+ dataset, unseen during training
- Accuracy: 0.7597
- Precision: 0.9223
- Recall: 0.7407
- F1 Score: 0.8216
How to Use:
Keep in mind, this model was trained on full 512 token chunks (tends to over-predict Unlikely for standalone sentences). If you're planning on processing stand alone sentences, you may find better results with this NMB+ model, which was trained on biased headlines.
from transformers import pipeline
classifier = pipeline("text-classification", model="maximuspowers/nmbp-bert-full-articles-balanced")
result = classifier("He was a terrible politician.", top_k=2)
Example Response:
[
{
'label': 'Likely',
'score': 0.9967995882034302
},
{
'label': 'Unlikely',
'score': 0.003200419945642352
}
]
- Downloads last month
- 4
Model tree for maximuspowers/nmbp-bert-full-articles-balanced
Base model
google-bert/bert-base-uncased