ChatGPT Prompt Generator
This model is a fine-tuned version of BART-large on a ChatGPT prompts dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.8329
- Validation Loss: 2.5015
- Epoch: 4
Intended uses & limitations
You can use this to generate ChatGPT personas. Simply input a persona like below:
from transformers import BartForConditionalGeneration, BartTokenizer
example_english_phrase = "photographer"
batch = tokenizer(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"], max_new_tokens=150)
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
8.4973 | 6.3592 | 0 |
5.3145 | 3.2640 | 1 |
3.5899 | 2.8350 | 2 |
3.1044 | 2.6154 | 3 |
2.8329 | 2.5015 | 4 |
Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2
- Downloads last month
- 180
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.