See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B-Instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ./train_CoT_comb.json
type: sharegpt
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
field_human: human # Optional[str]. Human key to use for conversation.
field_model: gpt # Optional[str]. Assistant key to use for conversation.
# Add additional keys from your dataset as input or output roles
roles:
input: # Optional[List[str]]. These will be masked based on train_on_input
output: # Optional[List[str]].:
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./outputs/salesagent-qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: salesagent_neg
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 10
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|end_of_text|>"
outputs/salesagent-qlora-out
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
Training results
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.4.1
- Datasets 2.21.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Model tree for miulab/SalesBot2_CoT_lora_w_neg_wo_dup_chitchat_e10
Base model
meta-llama/Meta-Llama-3-8B-Instruct