NeuralMarcoro14-7B

This is a DPO fine-tuned version of mlabonne/Marcoro14-7B-slerp using the chatml_dpo_pairs preference dataset. It improves the performance of the model on Nous benchmark suite and the Open LLM Benchmark.

It is currently the best-performing 7B LLM on the Open LLM Leaderboard (08/01/24).

You can try it out in this Space (GGUF Q4_K_M).

⚑ Quantized models

πŸ† Evaluation

Open LLM Leaderboard

Nous

Model AGIEval GPT4ALL TruthfulQA Bigbench Average
NeuralMarcoro14-7B 44.59 76.17 65.94 46.9 58.4
Marcoro14-7B-slerp 44.66 76.24 64.15 45.64 57.67
Change -0.07 -0.07 +1.79 +1.26 +0.73

🧩 Training hyperparameters

LoRA:

  • r=16
  • lora_alpha=16
  • lora_dropout=0.05
  • bias="none"
  • task_type="CAUSAL_LM"
  • target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']

Training arguments:

  • per_device_train_batch_size=4
  • gradient_accumulation_steps=4
  • gradient_checkpointing=True
  • learning_rate=5e-5
  • lr_scheduler_type="cosine"
  • max_steps=200
  • optim="paged_adamw_32bit"
  • warmup_steps=100

DPOTrainer:

  • beta=0.1
  • max_prompt_length=1024
  • max_length=1536

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/NeuralMarcoro14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
1,063
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mlabonne/NeuralMarcoro14-7B

Finetuned
(16)
this model
Finetunes
2 models
Merges
8 models
Quantizations
7 models

Dataset used to train mlabonne/NeuralMarcoro14-7B

Spaces using mlabonne/NeuralMarcoro14-7B 19

Collection including mlabonne/NeuralMarcoro14-7B

Evaluation results