YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

LayoutLM fine-tuned on FUNSD for Document/Forms token classification

Usage (WIP)

import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import pytesseract
from transformers import LayoutLMForTokenClassification, LayoutLMTokenizer


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = LayoutLMTokenizer.from_pretrained("mrm8488/layoutlm-finetuned-funsd")
model = LayoutLMForTokenClassification.from_pretrained("mrm8488/layoutlm-finetuned-funsd", num_labels=13)
model.to(device)


image = Image.open("/83443897.png")
image = image.convert("RGB")

# Display the image


# Run Tesseract (OCR) on the image

width, height = image.size
w_scale = 1000/width
h_scale = 1000/height

ocr_df = pytesseract.image_to_data(image, output_type='data.frame') \\n            
ocr_df = ocr_df.dropna() \\n               .assign(left_scaled = ocr_df.left*w_scale,
                       width_scaled = ocr_df.width*w_scale,
                       top_scaled = ocr_df.top*h_scale,
                       height_scaled = ocr_df.height*h_scale,
                       right_scaled = lambda x: x.left_scaled + x.width_scaled,
                       bottom_scaled = lambda x: x.top_scaled + x.height_scaled)

float_cols = ocr_df.select_dtypes('float').columns
ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
ocr_df = ocr_df.replace(r'^\s*$', np.nan, regex=True)
ocr_df = ocr_df.dropna().reset_index(drop=True)
ocr_df[:20]

# create a list of words, actual bounding boxes, and normalized boxes

words = list(ocr_df.text)
coordinates = ocr_df[['left', 'top', 'width', 'height']]
actual_boxes = []
for idx, row in coordinates.iterrows():
  x, y, w, h = tuple(row) # the row comes in (left, top, width, height) format
  actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box 
  actual_boxes.append(actual_box)

def normalize_box(box, width, height):
    return [
        int(1000 * (box[0] / width)),
        int(1000 * (box[1] / height)),
        int(1000 * (box[2] / width)),
        int(1000 * (box[3] / height)),
    ]

boxes = []
for box in actual_boxes:
  boxes.append(normalize_box(box, width, height))
 
# Display boxes

def convert_example_to_features(image, words, boxes, actual_boxes, tokenizer, args, cls_token_box=[0, 0, 0, 0],
                                 sep_token_box=[1000, 1000, 1000, 1000],
                                 pad_token_box=[0, 0, 0, 0]):
      width, height = image.size

      tokens = []
      token_boxes = []
      actual_bboxes = [] # we use an extra b because actual_boxes is already used
      token_actual_boxes = []
      for word, box, actual_bbox in zip(words, boxes, actual_boxes):
          word_tokens = tokenizer.tokenize(word)
          tokens.extend(word_tokens)
          token_boxes.extend([box] * len(word_tokens))
          actual_bboxes.extend([actual_bbox] * len(word_tokens))
          token_actual_boxes.extend([actual_bbox] * len(word_tokens))

      # Truncation: account for [CLS] and [SEP] with "- 2". 
      special_tokens_count = 2 
      if len(tokens) > args.max_seq_length - special_tokens_count:
          tokens = tokens[: (args.max_seq_length - special_tokens_count)]
          token_boxes = token_boxes[: (args.max_seq_length - special_tokens_count)]
          actual_bboxes = actual_bboxes[: (args.max_seq_length - special_tokens_count)]
          token_actual_boxes = token_actual_boxes[: (args.max_seq_length - special_tokens_count)]

      # add [SEP] token, with corresponding token boxes and actual boxes
      tokens += [tokenizer.sep_token]
      token_boxes += [sep_token_box]
      actual_bboxes += [[0, 0, width, height]]
      token_actual_boxes += [[0, 0, width, height]]
      
      segment_ids = [0] * len(tokens)

      # next: [CLS] token
      tokens = [tokenizer.cls_token] + tokens
      token_boxes = [cls_token_box] + token_boxes
      actual_bboxes = [[0, 0, width, height]] + actual_bboxes
      token_actual_boxes = [[0, 0, width, height]] + token_actual_boxes
      segment_ids = [1] + segment_ids

      input_ids = tokenizer.convert_tokens_to_ids(tokens)

      # The mask has 1 for real tokens and 0 for padding tokens. Only real
      # tokens are attended to.
      input_mask = [1] * len(input_ids)

      # Zero-pad up to the sequence length.
      padding_length = args.max_seq_length - len(input_ids)
      input_ids += [tokenizer.pad_token_id] * padding_length
      input_mask += [0] * padding_length
      segment_ids += [tokenizer.pad_token_id] * padding_length
      token_boxes += [pad_token_box] * padding_length
      token_actual_boxes += [pad_token_box] * padding_length

      assert len(input_ids) == args.max_seq_length
      assert len(input_mask) == args.max_seq_length
      assert len(segment_ids) == args.max_seq_length
      assert len(token_boxes) == args.max_seq_length
      assert len(token_actual_boxes) == args.max_seq_length
      
      return input_ids, input_mask, segment_ids, token_boxes, token_actual_boxes
      
input_ids, input_mask, segment_ids, token_boxes, token_actual_boxes = convert_example_to_features(image=image, words=words, boxes=boxes, actual_boxes=actual_boxes, tokenizer=tokenizer, args=args)

input_ids = torch.tensor(input_ids, device=device).unsqueeze(0)
attention_mask = torch.tensor(input_mask, device=device).unsqueeze(0)
token_type_ids = torch.tensor(segment_ids, device=device).unsqueeze(0)
bbox = torch.tensor(token_boxes, device=device).unsqueeze(0)


outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids)

token_predictions = outputs.logits.argmax(-1).squeeze().tolist() # the predictions are at the token level

word_level_predictions = [] # let's turn them into word level predictions
final_boxes = []
for id, token_pred, box in zip(input_ids.squeeze().tolist(), token_predictions, token_actual_boxes):
  if (tokenizer.decode([id]).startswith("##")) or (id in [tokenizer.cls_token_id, 
                                                           tokenizer.sep_token_id, 
                                                          tokenizer.pad_token_id]):
    # skip prediction + bounding box

    continue
  else:
    word_level_predictions.append(token_pred)
    final_boxes.append(box)

#print(word_level_predictions)


draw = ImageDraw.Draw(image)

font = ImageFont.load_default()

def iob_to_label(label):
  if label != 'O':
    return label[2:]
  else:
    return "other"

label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}

for prediction, box in zip(word_level_predictions, final_boxes):
    predicted_label = iob_to_label(label_map[prediction]).lower()
    draw.rectangle(box, outline=label2color[predicted_label])
    draw.text((box[0] + 10, box[1] - 10), text=predicted_label, fill=label2color[predicted_label], font=font)

# Display the result (image)
Downloads last month
8
Safetensors
Model size
113M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.