FNST_trad_2h

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3483
  • Accuracy: 0.6981
  • F1: 0.6890

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9472 0.32 500 0.8488 0.6418 0.6296
0.8362 0.64 1000 0.7882 0.6641 0.6492
0.7964 0.96 1500 0.7619 0.6821 0.6745
0.6268 1.28 2000 0.7757 0.6909 0.6829
0.6134 1.6 2500 0.7786 0.6857 0.6757
0.6236 1.92 3000 0.7758 0.6830 0.6713
0.456 2.24 3500 0.9266 0.6779 0.6688
0.4198 2.56 4000 0.8362 0.6859 0.6796
0.4334 2.88 4500 0.8705 0.6916 0.6813
0.3266 3.2 5000 1.0376 0.6934 0.6841
0.2825 3.52 5500 1.0690 0.6940 0.6821
0.294 3.84 6000 1.1104 0.6896 0.6812
0.2493 4.16 6500 1.3248 0.6848 0.6764
0.2085 4.48 7000 1.1945 0.6869 0.6789
0.2202 4.8 7500 1.2104 0.6853 0.6739
0.2011 5.12 8000 1.4272 0.6932 0.6853
0.1724 5.44 8500 1.3933 0.6823 0.6682
0.1873 5.76 9000 1.3483 0.6981 0.6890
0.1791 6.08 9500 1.5552 0.6815 0.6704
0.1527 6.4 10000 1.4202 0.6873 0.6754
0.1631 6.72 10500 1.6333 0.6727 0.6610
0.1635 7.04 11000 1.6169 0.6850 0.6696
0.1341 7.36 11500 1.5840 0.6871 0.6785
0.1513 7.68 12000 1.4788 0.6848 0.6739

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
12
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for mrovejaxd/FNST_trad_2h

Finetuned
(82)
this model