LLama3-1B-finetuning
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3472
- Accuracy: 0.8694
- F1 Macro: 0.8692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro |
---|---|---|---|---|---|
1.3459 | 1.0 | 360 | 0.7530 | 0.6667 | 0.6615 |
0.8291 | 2.0 | 720 | 0.4807 | 0.8021 | 0.7951 |
0.8198 | 3.0 | 1080 | 0.4037 | 0.8306 | 0.8255 |
0.6597 | 4.0 | 1440 | 0.4082 | 0.8292 | 0.8270 |
0.5621 | 5.0 | 1800 | 0.3817 | 0.8438 | 0.8410 |
0.5646 | 6.0 | 2160 | 0.3784 | 0.8472 | 0.8453 |
0.4532 | 7.0 | 2520 | 0.3879 | 0.8431 | 0.8401 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Model tree for msab97/LLama3-1B-finetuning
Base model
meta-llama/Llama-3.2-1B