metadata
language:
- en
license: apache-2.0
library_name: transformers
tags:
- transformers
datasets:
- mwitiderrick/OpenPlatypus
base_model: vihangd/shearedplats-2.7b-v2
inference: true
model_type: llama
prompt_template: |
### Instruction:\n
{prompt}
### Response:
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
- name: mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
results:
- task:
type: text-generation
dataset:
name: hellaswag
type: hellaswag
metrics:
- type: hellaswag (0-Shot)
value: 0.5283
name: hellaswag(0-Shot)
- task:
type: text-generation
dataset:
name: winogrande
type: winogrande
metrics:
- type: winogrande (0-Shot)
value: 0.6464
name: winogrande(0-Shot)
- task:
type: text-generation
dataset:
name: arc_challenge
type: arc_challenge
metrics:
- type: arc_challenge (0-Shot)
value: 0.3652
name: arc_challenge(0-Shot)
source:
url: >-
https://huggingface.co/mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: shearedplats-2.7b-v2-instruct-v0.1 model card
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 40.19
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 70.08
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.12
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.23
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.04
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 2.12
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1
name: Open LLM Leaderboard
ShearedPlats-7b Instruct
This is an ShearedPlats-7b model that has been fine-tuned on 2 epochs of the Open-Platypus dataset.
The modified version of the dataset can be found here
Prompt Template
### Instruction:
{query}
### Response:
<Leave new line for model to respond>
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline
tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/shearedplats-2.7b-v2-instruct-v0.1")
query = "Provide step-by-step instructions for making a sweet chicken bugger"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=350)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
Provide step-by-step instructions for making a sweet chicken bugger
### Response:
Step 1: Prepare the ingredients
You will need a mixture of ground chicken, breadcrumbs, butter, Worcestershire sauce, garlic powder, onion powder, salt, and pepper.
Step 2: Form the bugger
Take a piece of chicken breast meat and use a sharp knife to cut it into small cubes. Place the cubes in a bowl and add the remaining ingredients: breadcrumbs, butter, Worcestershire sauce, garlic powder, onion powder, salt, and pepper. Mix the ingredients together until they are well combined.
Step 3: Shape the bugger
Take a piece of the bugger mixture and form it into a ball. Place the ball on a plate or in a bag and refrigerate it for 30 minutes.
Step 4: Cook the bugger
Heat a grill pan or grill to medium-high heat. Take the bugger out of the refrigerator and place it on the grill. Cook the bugger for 5-7 minutes on each side, or until it is cooked through.
Step 5: Serve and enjoy!
Once the bugger is cooked, serve it hot and enjoy!
Note: You can also use a sweet chicken bugger mix to make sweet chicken buggers. Simply follow the instructions above, but use the sweet chicken bugger mix instead of the ground chicken.
Enjoy your sweet chicken buggers!
"""
Evals
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml |none | 0|acc |0.5283|± |0.0050|
| | |none | 0|acc_norm|0.7068|± |0.0045|
| Groups |Version|Filter|n-shot| Metric | Value | |Stderr|
|----------|-------|------|-----:|-----------|------:|---|-----:|
|truthfulqa|N/A |none | 0|acc | 0.3411|± |0.0016|
| | |none | 0|bleu_max |19.4174|± |0.6888|
| | |none | 0|bleu_acc | 0.3378|± |0.0166|
| | |none | 0|bleu_diff |-4.4165|± |0.6611|
| | |none | 0|rouge1_max |43.6923|± |0.8239|
| | |none | 0|rouge1_acc | 0.3305|± |0.0165|
| | |none | 0|rouge1_diff|-6.4023|± |0.7680|
| | |none | 0|rouge2_max |28.4074|± |0.8883|
| | |none | 0|rouge2_acc | 0.2827|± |0.0158|
| | |none | 0|rouge2_diff|-6.7716|± |0.8844|
| | |none | 0|rougeL_max |40.2657|± |0.8218|
| | |none | 0|rougeL_acc | 0.3023|± |0.0161|
| | |none | 0|rougeL_diff|-6.5447|± |0.7706|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml |none | 0|acc |0.6464|± |0.0134|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 0|acc |0.3652|± |0.0141|
| | |none | 0|acc_norm|0.3908|± |0.0143|
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 41.13 |
AI2 Reasoning Challenge (25-Shot) | 40.19 |
HellaSwag (10-Shot) | 70.08 |
MMLU (5-Shot) | 28.12 |
TruthfulQA (0-shot) | 41.23 |
Winogrande (5-shot) | 65.04 |
GSM8k (5-shot) | 2.12 |