๐ฅ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐ฟ๐ฒ๐น๐ฒ๐ฎ๐๐ฒ๐ ๐๐ฒ๐บ๐ถ๐ป๐ถ ๐ฎ.๐ฌ, ๐๐๐ฎ๐ฟ๐๐ถ๐ป๐ด ๐๐ถ๐๐ต ๐ฎ ๐๐น๐ฎ๐๐ต ๐บ๐ผ๐ฑ๐ฒ๐น ๐๐ต๐ฎ๐ ๐๐๐ฒ๐ฎ๐บ๐ฟ๐ผ๐น๐น๐ ๐๐ฃ๐ง-๐ฐ๐ผ ๐ฎ๐ป๐ฑ ๐๐น๐ฎ๐๐ฑ๐ฒ-๐ฏ.๐ฒ ๐ฆ๐ผ๐ป๐ป๐ฒ๐! And they start a huge effort on agentic capabilities.
๐ The performance improvements are crazy for such a fast model: โฃ Gemini 2.0 Flash outperforms the previous 1.5 Pro model at twice the speed โฃ Now supports both input AND output of images, video, audio and text โฃ Can natively use tools like Google Search and execute code
โก๏ธ If the price is on par with previous Flash iteration ($0.30 / M tokens, to compare with GPT-4o's $1.25) the competition will have a big problem with this 4x cheaper model that gets better benchmarks ๐คฏ
๐ค What about the agentic capabilities?
โฃ Project Astra: A universal AI assistant that can use Google Search, Lens and Maps โฃ Project Mariner: A Chrome extension that can complete complex web tasks (83.5% success rate on WebVoyager benchmark, this is really impressive!) โฃ Jules: An AI coding agent that integrates with GitHub workflows
I'll be eagerly awaiting further news from Google!
small but mighty ๐ฅ you can fine-tune SmolVLM on an L4 with batch size of 4 and it will only take 16.4 GB VRAM ๐ซฐ๐ป also with gradient accumulation simulated batch size is 16 โจ I made a notebook that includes all the goodies: QLoRA, gradient accumulation, gradient checkpointing with explanations on how they work ๐ https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb
Today is a huge day in Argillaโs history. We couldnโt be more excited to share this with the community: weโre joining Hugging Face!
Weโre embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI.
Over the past year, weโve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching argilla/notus-7b-v1 building on Zephyrโs learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing argilla/OpenHermesPreferences, one of the largest open preference tuning datasets
After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, weโre now the same team.
To those of you whoโve been following us, this wonโt be a huge surprise, but it will be a big deal in the coming months. This acquisition means weโll double down on empowering the community to build and collaborate on high quality datasets, weโll bring full support for multimodal datasets, and weโll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.
As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amรฉlie.
Finally, huge thanks to the Chief Llama Officer @osanseviero for sparking this and being such a great partner during the acquisition process.
Would love to answer any questions you have so feel free to add them below!