metadata
library_name: transformers
license: apache-2.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- neginashz/rationale-llama-chat-dataset
model-index:
- name: star-sft-intellect-instruct-2
results: []
See axolotl config
axolotl version: 0.6.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gpu_memory_limit:
load_in_8bit:
load_in_4bit:
strict: false
chat_template: llama3
datasets:
- path: neginashz/rationale-llama-chat-dataset
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./star-sft-intellect-2
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: star-sft-intellect-instruct-2
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps:
save_steps:
evals_per_epoch: 16
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay:
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
pad_token: <|finetune_right_pad_id|>
hub_model_id: neginashz/star-sft-intellect-instruct-2
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
star-sft-intellect-instruct-2
This model is a fine-tuned version of PrimeIntellect/INTELLECT-1-Instruct on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.3719
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5033 | 0.0686 | 7 | 0.4057 |
0.4303 | 0.1373 | 14 | 0.3986 |
0.4496 | 0.2059 | 21 | 0.3977 |
0.4223 | 0.2745 | 28 | 0.3973 |
0.4083 | 0.3431 | 35 | 0.3940 |
0.4191 | 0.4118 | 42 | 0.3893 |
0.412 | 0.4804 | 49 | 0.3859 |
0.3912 | 0.5490 | 56 | 0.3812 |
0.3995 | 0.6176 | 63 | 0.3749 |
0.4236 | 0.6863 | 70 | 0.3703 |
0.3833 | 0.7549 | 77 | 0.3663 |
0.3605 | 0.8235 | 84 | 0.3614 |
0.3952 | 0.8922 | 91 | 0.3576 |
0.3744 | 0.9608 | 98 | 0.3540 |
0.199 | 1.0196 | 105 | 0.3536 |
0.1762 | 1.0882 | 112 | 0.4128 |
0.1704 | 1.1569 | 119 | 0.3808 |
0.1603 | 1.2255 | 126 | 0.3781 |
0.1727 | 1.2941 | 133 | 0.3874 |
0.1624 | 1.3627 | 140 | 0.3841 |
0.1546 | 1.4314 | 147 | 0.3793 |
0.1602 | 1.5 | 154 | 0.3776 |
0.1501 | 1.5686 | 161 | 0.3745 |
0.146 | 1.6373 | 168 | 0.3734 |
0.1512 | 1.7059 | 175 | 0.3733 |
0.146 | 1.7745 | 182 | 0.3725 |
0.1479 | 1.8431 | 189 | 0.3721 |
0.1395 | 1.9118 | 196 | 0.3720 |
0.1472 | 1.9804 | 203 | 0.3719 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0