newsletter/granite-3b-code-instruct-Q6_K-GGUF
This model was converted to GGUF format from ibm-granite/granite-3b-code-instruct
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew.
brew install ggerganov/ggerganov/llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo newsletter/granite-3b-code-instruct-Q6_K-GGUF --model granite-3b-code-instruct.Q6_K.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo newsletter/granite-3b-code-instruct-Q6_K-GGUF --model granite-3b-code-instruct.Q6_K.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m granite-3b-code-instruct.Q6_K.gguf -n 128
- Downloads last month
- 2
Model tree for newsletter/granite-3b-code-instruct-Q6_K-GGUF
Base model
ibm-granite/granite-3b-code-base-2kDatasets used to train newsletter/granite-3b-code-instruct-Q6_K-GGUF
Evaluation results
- pass@1 on HumanEvalSynthesis(Python)self-reported51.200
- pass@1 on HumanEvalSynthesis(Python)self-reported43.900
- pass@1 on HumanEvalSynthesis(Python)self-reported41.500
- pass@1 on HumanEvalSynthesis(Python)self-reported31.700
- pass@1 on HumanEvalSynthesis(Python)self-reported40.200
- pass@1 on HumanEvalSynthesis(Python)self-reported29.300
- pass@1 on HumanEvalSynthesis(Python)self-reported39.600
- pass@1 on HumanEvalSynthesis(Python)self-reported26.800
- pass@1 on HumanEvalSynthesis(Python)self-reported39.000
- pass@1 on HumanEvalSynthesis(Python)self-reported14.000