Qra-1b-dolly-instruction-0.1

This model if a fine-tuned version of OPI-PG/Qra-1b on the s3nh/alpaca-dolly-instruction-only-polish dataset.

Model Description

Trained from OPI-PG/Qra-1b

Intended uses & limitations

This model has been fine-tuned for question-answering task. It is possible to use it as a chat, but it doesn't work well because the dataset did not contain conversations.

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model_id = "nie3e/Qra-1b-dolly-instruction-0.1"
device = "cuda" if torch.cuda.is_available() else "cpu"

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(
    "text-generation", model=model, tokenizer=tokenizer, device=device
)

def get_answer(system_prompt: str, user_prompt: str) -> str:
    input_msg = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]
    prompt = pipe.tokenizer.apply_chat_template(
        input_msg, tokenize=False,
        add_generation_prompt=True
    )
    outputs = pipe(
        prompt, max_new_tokens=512, do_sample=False, temperature=0.1, top_k=50,
        top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id,
        pad_token_id=pipe.tokenizer.pad_token_id
    )
    return outputs[0]['generated_text'][len(prompt):].strip()

print(
        get_answer(
        system_prompt="Jesteś przyjaznym chatbotem",
        user_prompt="Napisz czym jest dokument architectural decision record."
    )
)

Training and evaluation data

Dataset: s3nh/alpaca-dolly-instruction-only-polish

Each row has been converted into conversation using this function:

system_message = """Jesteś przyjaznym chatbotem"""

def create_conversation(sample) -> dict:
    strip_characters = "\"'"
    return {
        "messages": [
            {"role": "system", "content": system_message},
            {"role": "user",
             "content": f"{sample['instruction'].strip(strip_characters)} "
                        f"{sample['input'].strip(strip_characters)}"},
            {"role": "assistant",
             "content": f"{sample['output'].strip(strip_characters)}"}
        ]
    }

Train/test split: 90%/10%

Training procedure

GPU: 2x RTX 4060Ti 16GB Training time: ~1 hour

Using accelerate + deepspeed with config:

compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
  gradient_accumulation_steps: 2
  zero3_init_flag: false
  zero_stage: 1
distributed_type: DEEPSPEED
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

Training hyperparameters

Lora config:

peft_config = LoraConfig(
    lora_alpha=128,
    lora_dropout=0.05,
    r=256,
    bias="none",
    target_modules="all-linear",
    task_type="CAUSAL_LM"
)

Training arguments:

args = TrainingArguments(
    output_dir="Qra-1b-dolly-instruction-0.1",
    num_train_epochs=3,
    per_device_train_batch_size=3,
    gradient_accumulation_steps=2,
    gradient_checkpointing=True,
    optim="adamw_torch_fused",
    logging_steps=10,
    save_strategy="epoch",
    learning_rate=2e-4,
    bf16=True,
    tf32=True,
    max_grad_norm=0.3,
    warmup_ratio=0.03,
    lr_scheduler_type="constant",
    push_to_hub=False,
    report_to=["tensorboard"],
)

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
18
Safetensors
Model size
1.1B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train nie3e/Qra-1b-dolly-instruction-0.1