Meta-Llama-3-8B-Instruct-mirage-mirage-gpt-4o-sft-instruct-llama-3

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the nthakur/mirage-gpt-4o-sft-instruct-llama-3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2505

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.3599 0.1268 200 0.3172
0.3295 0.2536 400 0.2919
0.323 0.3803 600 0.2789
0.3274 0.5071 800 0.2686
0.3171 0.6339 1000 0.2597
0.3034 0.7607 1200 0.2540
0.265 0.8875 1400 0.2510

Framework versions

  • PEFT 0.10.0
  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for nthakur/Meta-Llama-3-8B-Instruct-mirage-mirage-gpt-4o-sft-instruct-llama-3

Adapter
(661)
this model

Dataset used to train nthakur/Meta-Llama-3-8B-Instruct-mirage-mirage-gpt-4o-sft-instruct-llama-3